线性代数思维方法

线性向量空间

向量空间的定义:

  • 满足封闭性、完备性、线性运算,以及一些标准化约定。n维向量空间的点可以用基向量线性表示。

欧几里得空间的定义:

  • 一种特殊的向量空间,规定了内积、长度、角度等,即欧几里得空间是向量空间与一种特殊的测度,这种测度允许我们计算距离和角度。
  • n维向量组(n* n矩阵)与变换矩阵(n* n矩阵)的点积为另一组向量组(n* n矩阵)。
  • n维基向量组因彼此线性无关,而一定可以正交化。方法为Schmidt正交化,即每一向量减去其他向量在该向量方向的投影。
  • 线性方程组,是一组向量在n维标准正交基向量下,经过线性变换矩阵的作用后,变为一组新的向量,已知新向量组,求解原向量组。
  • gauss消元法:gauss消元法是通过初等变换还原变换矩阵为标准型矩阵(反映标准正交基向量在其变换后的正交基向量),达到简化的目的。

矩阵和行列式是描述n维向量空间的基本语言,以下观点同时也是对n维向量空间的分析。

行列式与矩阵

行列式

  • n阶行列式是对应n阶矩阵所描述的线性变换对空间形变的效果。
  • Cramer法则:Cramer法则是在某一具体基向量下,通过末变换和初变换的比值,求解线性变换系数Xn。

矩阵

  • 矩阵的乘法:两个线性映射的复合映射。
  • 矩阵描述的线性基本变换:缩放、剪切、旋转(绕某一维度,镜像也包括在内)、维度变换{投影(维度降低)、嵌入(维度升高)}。
  • 任何满秩矩阵所描述的变换都可以看成缩放、剪切、旋转的组合

特殊矩阵

  • 转置矩阵:转置操作不改变矩阵所描述的线性变换类型,但转置操作改变矩阵操作的基向量。(在这里我们称之为对偶变换)。
  • 正交矩阵:是一种保距映射,即它是旋转这一基本变换
  • 对称矩阵:矩阵和转置矩阵操作的上述基向量的改变无关,原因:对称矩阵的特征向量矩阵是正交矩阵,因而对称矩阵可以表示成由特征值组成的对角矩阵在一组新的基(标准正交基经过保距映射)的线性变换,本质上,该对角矩阵已充分表述了该线性变换对标准正交基的作用)
  • 逆矩阵:原矩阵操作的回溯操作。(包括线性变换的回溯,空间形变的回溯)
  • 可逆矩阵的变换:可逆矩阵所描述的变换是缩放、剪切,旋转三种基本变换的组合,这三种基本变换对应于三种初等变换。也就是说可逆矩阵可以表示成有限个初等矩阵的乘积。
  • 相似矩阵:相似矩阵与原矩阵是同一种线性变换在不同基下的表示,他们的迹和特征值等等很多都是相同的。满秩矩阵一定可以相似对角化,因为它们在对基实行变换时,不会出现维度变换。
  • 合同矩阵:合同矩阵和原矩阵描述了不同基下的同一二次型。进一步,当我们在不同基下观察同一个几何对象,虽然表示对象的矩阵可能不同,但所表述的对象本身的性质没有改变。

合同矩阵与对称矩阵的区别:对称矩阵是,当我们在不同基下观察同一线性变换,虽然表示这个变换的矩阵不同,但所表述的本身对象的性质没有改变。

性质

  • 初等变换:任何矩阵都可以分解为初等矩阵与标准型矩阵的乘积,其中标准型矩阵反映矩阵的秩
  • 矩阵的秩矩阵的秩反映矩阵变换所能保有的有效信息量,也就是在不发生信息减损条件下,能表达的最大信息自由度
  • 特征向量:在矩阵变换下方向不变或相反的向量。
  • 特征值:特征向量的伸缩系数。特征向量个数与矩阵的秩相等。
  • 特征值和特征向量描述了矩阵变换的特征
  • 相似对角化:满秩矩阵可以相似对角化,满秩矩阵可以表示成对一组基(标准基向量经过特征向量矩阵的变换)施行伸缩变换,即满秩矩阵与对角矩阵是同一线性变换在不同基下的表示
  • Jordan标准型:每个Jordan块的大小反映了矩阵在该特征值下的不可对角化程度
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值