线性代数的学习和整理15:线性代数的快速方法,线性代数的内在逻辑(未完成草稿)

 

 5  空间的同构

下面再谈谈同构。线性空间千千万,应如何研究呢?同构就是这样一个强大的概念,任何维数相同的线性空间之间是同构的,空间的维数是简单而深刻的,简单的自然数居然能够刻画空间最本质的性质。借助于同构,要研究任意一个n维线性空间,只要研究Rⁿ就行了。

n维线性空间作为一个整体,我们自然想到能不能先研究它的局部性质?所以自然而然的导出了子空间的概念以及整个空间的直和分解。直和分解要求把整个空间分解为两两不交的子空间之和,通过研究各个简单的子空间的性质,从而得出整个空间的性质。


 

6 求最简矩阵

然而一个线性映射的矩阵在标准正交基下可能特别复杂,所以需要选择一组特殊的基,让它的矩阵在这个基下有最简单的矩阵表示。如果存在这样的基,使得线性映射的矩阵为对角矩阵,则称这个线性映射可对角化。

然而是不是所有线性映射都可以对角化呢,遗憾的是,并不是。那么就要问,如果一个线性映射不能对角化,那么它的最简矩阵是什么?这个问题的答案是若尔当标准型。可以证明,在复数域上,任何线性映射都存在唯一的若尔当标准型。

1 线性代数的内在逻辑脉络

1.1 逻辑脉络1 (主线?)

向量的维度

向量组的秩,和维度相关。

向量组的秩是向量组的最大线性无关组

1.2 逻辑脉络2(主线?)

比如,如果有一种矩阵,线性变换后,仍然共线,那么这种矩阵就可以求特征值和特征向量

那怎么求呢,就是用定义求

然后这些矩阵可以求矩阵的N次方  A^n ,但是n比较大了计算就比较复杂

然后就想到,如果把A转成对角矩阵就会比较简单λ

λ其实就是[λ,0;0,λ] , 那么A=λ*P,这样就把A转化为对角矩阵了

这样由矩阵A的特征值构成的矩阵,这样求A^n就快了

但是还有一个问题

AP=PA

A=PλP-

但是P-不好求

但是如果P是一个正交矩阵,就Pt=P-就很好求了

A=PλPt

因此我们要学会怎么让矩阵正交化,施密特正交化方法等等

2  线性代数的知识和其他知识的对应(换一个角度看世界)

向量,矩阵的线性代数知识和其他知识的对应

向量和矩阵的几何表示

行列式,面积的变化比

向量的长度模

向量的正交,就是垂直,但这里定义为内积=0,其实是另外一种垂直的定义方法

向量的加减乘除

加法,减法,就是向量线段的三角形法则

乘法的点乘、、

乘法的叉乘

向量的点乘

向量的叉乘,

向量的叉乘直接就是面积公式

角度公式

好像也可以用向量的方法来求

3 数学/线性代数里,其实很多东西的求得都有多种解决办法

很多概念,界定狠清晰,但是不好求

多种方法,拓宽思维

方法1:按定义直接去求解

方法2:按

2 比如求逆矩阵

概念方法,线性变化

增广矩阵

其他方法

分块矩阵

伴随矩阵

|A|=0

3 求矩阵的秩

4 求方程组的解的好方法

直接可以用行列式的方法求解啊

1.2 有没有其他方法呢?有:比如2阶行列式方法

因为二阶行列式的公式求值如下

\begin{vmatrix} a11 & a12\\ a21 & a22 \end{vmatrix} = a11*a22-a12*a21

所以二元方程组的求解也可以用行列式写成

x1= \begin{vmatrix} b1 & a12\\ b2 & a22 \end{vmatrix} /\begin{vmatrix} a11 & a12\\ a21 & a22 \end{vmatrix} , x2= \begin{vmatrix} a11 & b1\\ a21 & b2 \end{vmatrix} /\begin{vmatrix} a11 & a12\\ a21 & a22 \end{vmatrix}

1.3  3阶行列式

  1. 如果 |A|≠0 ,则,矩阵A满秩,矩阵A可逆

3.3 行列式的意义和作用呢?

  • 作用1:快速解出,多元方程组的解
  • 作用2:通过矩阵的余子式的转置等计算,矩阵的逆矩阵

3.4 行列式的结果(是1个标量)的作用
行列数的值代表 有向面积的变化率/变化倍数
行列式的值(结构)的作用
|A| =|AT|   矩阵和对应转置矩阵的行列式相等
如果 |A|≠0 ,则,矩阵A满秩,矩阵A可逆
如果 |A|=0 ,那么就是说至少有两个向量在变换之后,共线了。参考[1,1;1,1] 矩阵的效果
如果 |A|>0 ,正值表示方向相同
如果 |A|<0 ,负值代表着翻面了,方向相反,相对位置发生了调换
————————————————
版权声明:本文为CSDN博主「奔跑的犀牛先生」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/xuemanqianshan/article/details/132390299

定理

有解的判断

  • 对于线性方程组 Ax=b,如果系数矩阵A和秩 = 增广矩阵B(B=A|b)的秩,也就是rank(A) =rank(B)那么就有解

  • Ax=y
  • 矩阵Am*n, 而Xn*1=[x1,x2....xn] ,bm*1=[b1,b2....bm]
  • \begin{bmatrix} a11 &a12&...&a1n\\ a21 &a22&...&a2n\\ ... &...&...&...\\ am1 &am2&...&amn\end{bmatrix} * \begin{bmatrix} x1\\ x2 \\ ... \\ xn \end{bmatrix} = \begin{bmatrix} b1\\ b2\\ ...\\ bm \end{bmatrix}
  • rank(x) =n   单个一维向量,不存在线性相关问题所以 n 代表定义域X的秩
  • rank(b)=m   单个一维向量,不存在线性相关问题
  • 因此,A的零空间 rank(A)<=min(m,n) ,rank(A) 代表值域的秩,因为值域 rank(b)=m其实被rank(A) 所决定。但是值域的秩,为啥不直接用 rank(b) 呢?
  • 而 rank(null(A)) 实际就是 rank(Ax=0),所以 rank(null(A))<=min(m,n)

解的个数的判断

  • 对于线性方程组 Ax=b,如果系数矩阵A和秩 = 增广矩阵B(B=A|b)的秩,并且
  • 如果A是m*n的矩阵,其中n是X的秩。
  • m,n 的相对大小不定,m (> or < or =) n
  1. rank(A) =rank(A|b)=n (n=rank(X)=A满秩时列向量个数) ,就有唯一解 
  2. rank(A) =rank(A|b)<n (n=rank(X)=A满秩时列向量个数),就有无数解

满秩矩阵有唯一解

定理

有解的判断

对于线性方程组 Ax=b,如果系数矩阵A和秩 = 增广矩阵B(B=A|b)的秩,也就是rank(A) =rank(B)那么就有解
解的个数的判断

对于线性方程组 Ax=b,如果系数矩阵A和秩 = 增广矩阵B(B=A|b)的秩,并且
如果A是m*n的矩阵,其中n是A的列向量的个数。
rank(A) =rank(B)=n (A的列向量的个数) ,就有唯一解 
rank(A) =rank(B)<n (A的列向量的个数)  ,就有无数解
满秩矩阵有唯一解
————————————————
版权声明:本文为CSDN博主「奔跑的犀牛先生」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/xuemanqianshan/article/details/132522056

7 秩零定理

  • Ax=y
  • 矩阵Am*n, 而Xn*1=[x1,x2....xn] ,bm*1=[b1,b2....bm]
  • \begin{bmatrix} a11 &a12&...&a1n\\ a21 &a22&...&a2n\\ ... &...&...&...\\ am1 &am2&...&amn\end{bmatrix} * \begin{bmatrix} x1\\ x2 \\ ... \\ xn \end{bmatrix} = \begin{bmatrix} b1\\ b2\\ ...\\ bm \end{bmatrix}
  1. rank(x) =n   单个一维向量,不存在线性相关问题,所以 n 代表定义域X的秩
  2. rank(b)=m   单个一维向量,不存在线性相关问题
  3. 因此,A的零空间 rank(A)<=min(m,n) ,rank(A) 代表值域的秩,因为值域 rank(b)=m其实被rank(A) 所决定。但是值域的秩,为啥不直接用 rank(b) 呢?
  4. 而 rank(null(A)) 实际就是 rank(Ax=0),所以 rank(null(A))<=min(m,n)

形式1

  • rank(值域)+rank(null(A)) = rank(定义域)
  • rank(A)+rank(null(A))=n

形式2

7 秩零定理
对于矩阵Am*n,其中n 是A的列向量个数

形式1

rank(值域)+rank(null(A)) = rank(定义域)
rank(A)+rank(null(A))=n
形式2

rank(定义域)>=rank(值域)
rank(定义域)--rank(null(A))=rank(值域)
n-rank(null(A))=rank(A)
8 其他知识点

 


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值