【python】numpy数组中按照特征值对特征向量进行排序

2 篇文章 0 订阅

最近使用python进行数据处理,需要计算矩阵的特征值和特征向量,然后对特征值由小到大排序,去前k个特征值对应的特征向量(其实是自己实现双向2D PCA算法),感觉numpy中实现这个算法的方式很巧妙。

假设已经计算好了特征值evals=[0,2,5,3,1]和对应的特征向量evecs=[[1,1],[2,3],[4,5],[7,7],[6,8]]。首先要对特征值排序,这里要用到argmax这个函数:

import numpy as np

evals=np.array([0,2,5,3,1])
evecs=np.array([[1,1],[2,3],[4,5],[7,7],[6,8]])

sorted_indices = np.argsort(evals)

上面得到的sorted_indices就是特征值排序后的结果,巧妙的是这里是用数组下标来表示的,也就是说其中存放的是特征值由小到大的顺序排序时对应的下标[0, 4, 1, 3, 2],而不是直接存放特征值。

下一步就是取前k大的特征向量了:

topk_evecs = evecs[:,sorted_indices[:-k-1:-1]]

一句话就可以搞定了,这里利用的numpy数组的便利。

numpy数组的索引除了指定第一维外,还可以指定特定的列数,上面的evecs[ : , …]逗号后面省略的部分就是指定对应要保留的特征向量的列号(特征向量按列存放)。

sorted_indices[:-k-1:-1]则利用切片的语法特性,保留了前K大的特征值对应的下标。切片有三个参数[start : end : step],当step为-1时,表示逆序,从最后一个元素开始,一直到第end+1个元素为止。sorted_indices[:-k-1:-1]则表示从最后一个元素一直到第k个为止的所有下标,也就是前k大的特征值对应的下标。

这样通过很简洁的语句,就完成了将特征值排序并取前k大特征值对应的特征向量这一功能。

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值