💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
融合正余弦和柯西变异的麻雀优化算法(SCSSA)是一种优化算法,在时间序列预测模型中被应用以提高预测准确性。该算法主要分为以下几个部分:
1. 正余弦和柯西变异:正余弦变异和柯西变异是两种常见的变异策略,用于通过对当前种群进行变异操作来生成新的个体。这些变异策略基于数学函数,可以帮助算法快速地在搜索空间中进行探索。
2. 麻雀优化算法(SCSSA):麻雀优化算法是一种基于鸟类觅食行为的优化算法。该算法模拟了小麻雀在觅食过程中的移动策略,通过自适应搜索和局部搜索相结合的方式来优化解空间。SCSSA配合正余弦和柯西变异,可以帮助算法更好地搜索最优解。
3. CNN-BiLSTM模型:CNN-BiLSTM是一种结合了卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的模型。CNN用于提取输入数据中的空间特征,而BiLSTM则用于捕捉输入数据中的时间依赖关系。这种结合可以更好地处理时间序列数据,提高预测模型的准确性。
SCSSA是一种融合正余弦和柯西变异的麻雀优化算法,其基本原理如下:
首先,SCSSA采用折射反向学习策略初始化麻雀算法个体。这种策略通过计算当前解的反向解来扩大搜索范围,从而找出更好的备选解。其次,SCSSA采用正余弦策略替换原始麻雀算法的发现者位置更新公式。当发现者搜寻的食物位于局部最优时,大量的跟随者会涌入到该位置,此时发现者与整个群体停滞不前,造成种群位置多样性出现损失。因此,正余弦策略的引入可以有效地平衡种群的全局搜索和局部开发能力。此外,SCSSA对正余弦策略的步长搜索因子进行改进,以进一步提升算法的性能。
最后,SCSSA采用柯西变异策略替换原始麻雀算法的跟随者位置更新公式。柯西分布与标准的正态分布相似,但在原点处值较小,两端较为扁长,逼近零速率较慢。因此,利用柯西变异对麻雀位置进行扰动,可以扩大算法的搜索规模,进而提升跳出局部最优的能力。
相比于原始麻雀算法,SCSSA具有更强的全局搜索和局部开发能力,可以更好地应对复杂的优化问题。
另外,CNN-BiLSTM是一种常用的深度学习模型,用于序列预测任务。在该模型中,训练集数据首先输入CNN模型中,通过卷积层和池化层的构建,进行特征提取。然后,通过BiLSTM模型进行序列预测。但是,该模型有许多需要调整的参数,包括学习率、正则化参数、神经网络层数、卷积层数、BatchSize、最大训练次数等。因此,在使用CNN-BiLSTM模型时,需要进行参数调整以获得最佳性能。
综上所述,基于融合正余弦和柯西变异的麻雀优化算法(SCSSA)-CNN-BiLSTM模型可以充分利用SCSSA算法的优化能力和CNN-BiLSTM模型的时间序列建模能力,提高时间序列预测的准确性。这种模型能够在时间序列数据中找到最优的参数组合,并利用CNN和BiLSTM来提取特征和建模时间关系,从而更好地预测未来的值。
📚2 运行结果
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]张兵,周丹丹,孙健,等.基于双向长短期记忆网络的公交到站时间预测模型[J].交通运输系统工程与信息, 2023, 23(2):148-160.
[2]姜南林.基于改进麻雀搜索算法优化长短期记忆网络的短期电力负荷预测研究[J].[2023-12-18].