【负荷预测】基于VMD-CNN-BiGRU的负荷预测研究(Python代码实现)

                           💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Python代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于VMD-CNN-BiGRU的负荷预测研究

一、引言

随着智能电网的快速发展,电力负荷预测成为电力系统运行管理中的重要环节。传统的负荷预测方法在面对复杂多变的负荷数据时,往往难以达到理想的预测精度。因此,本研究提出了一种基于变分模态分解(VMD)、卷积神经网络(CNN)和双向门控循环单元(BiGRU)的负荷预测模型,旨在提高负荷预测的准确性和鲁棒性。

二、技术原理

  1. 变分模态分解(VMD)
    • 定义:VMD是一种非线性、非平稳信号的处理方法,能够将复杂信号自适应地分解为一系列具有有限带宽的固有模态函数(IMF)。
    • 作用:在负荷预测中,VMD能够将电力负荷数据分解为多个不同频率的子信号,有助于分离噪声和信号,揭示隐藏在复杂数据中的模式,提高后续模型对特征数据的处理能力。
  2. 卷积神经网络(CNN)
    • 特点:CNN具有强大的局部特征提取能力,通过卷积核在输入数据上滑动,提取出数据的空间局部特征。
    • 应用:在负荷预测中,CNN用于处理VMD分解后得到的各个IMF分量,提取每个分量中的局部特征,为后续的BiGRU建模提供输入。
  3. 双向门控循环单元(BiGRU)
    • 特点:BiGRU是一种特殊的循环神经网络(RNN),具有双向记忆和门控机制,能够同时捕捉时间序列数据中的正向和反向依赖关系。
    • 作用:在负荷预测中,BiGRU用于捕捉电力负荷数据中的长期依赖关系,结合CNN提取的局部特征,进行负荷的预测。

三、研究框架

  1. 数据预处理
    • 收集历史电力负荷数据及相关影响因素数据。
    • 对数据进行清洗,去除异常值和缺失值,并进行归一化处理。
  2. VMD分解
    • 对预处理后的电力负荷数据进行VMD分解,得到多个IMF分量。
    • 每个IMF分量代表负荷数据在不同频率下的波动特性。
  3. 特征提取
    • 对每个IMF分量,使用CNN进行特征提取,得到局部特征向量。
  4. 模型构建与训练
    • 构建基于BiGRU的深度学习模型,将CNN提取的特征向量作为输入。
    • 设置模型参数,如隐藏层数、神经元个数、学习率等。
    • 使用训练数据对模型进行训练,优化模型参数。
  5. 负荷预测
    • 使用训练好的模型对未来的电力负荷进行预测。
    • 对预测结果进行反归一化处理,得到实际的负荷预测值。
  6. 评估与优化
    • 使用评估指标(如均方误差MSE、均方根误差RMSE、平均绝对误差MAE等)对预测结果进行评估。
    • 根据评估结果对模型进行优化,如调整模型参数、增加数据量等。

四、研究优势

  1. 多尺度特征提取:VMD-CNN-BiGRU模型结合了VMD、CNN和BiGRU的优势,能够从多个尺度提取负荷数据中的特征,提高预测的准确性。
  2. 长期依赖捕捉:BiGRU的双向记忆机制使得模型能够捕捉负荷数据中的长期依赖关系,提高预测的鲁棒性。
  3. 灵活性高:模型结构灵活,可以根据具体需求调整VMD的分解层数、CNN的卷积层数和BiGRU的隐藏层数等参数。

五、结论与展望

本研究提出的基于VMD-CNN-BiGRU的负荷预测模型在电力负荷预测中表现出较高的准确性和鲁棒性。未来,可以进一步探索其他先进的信号处理方法和深度学习模型在负荷预测中的应用,以不断提高预测精度和效率。同时,也可以将负荷预测与电力系统的其他环节相结合,如需求侧管理、储能优化等,以实现电力系统的整体优化。

📚2 运行结果

部分代码:

# 初始化存储各个评估指标的字典。
table = PrettyTable(['测试集指标','MSE', 'RMSE', 'MAE', 'MAPE','R2'])
for i in range(n_out):
    # 遍历每一个预测步长。每一列代表一步预测,现在是在求每步预测的指标
    actual = [float(row[i]) for row in Ytest]  #一列列提取
    # 从测试集中提取实际值。
    predicted = [float(row[i]) for row in predicted_data]
    # 从预测结果中提取预测值。
    mse = mean_squared_error(actual, predicted)
    # 计算均方误差(MSE)。
    mse_dic.append(mse)
    rmse = sqrt(mean_squared_error(actual, predicted))
    # 计算均方根误差(RMSE)。
    rmse_dic.append(rmse)
    mae = mean_absolute_error(actual, predicted)
    # 计算平均绝对误差(MAE)。
    mae_dic.append(mae)
    MApe = mape(actual, predicted)
    # 计算平均绝对百分比误差(MAPE)。
    mape_dic.append(MApe)
    r2 = r2_score(actual, predicted)
    # 计算R平方值(R2)。
    r2_dic.append(r2)
    if n_out == 1:
        strr = '预测结果指标:'
    else:
        strr = '第'+ str(i + 1)+'步预测结果指标:'
    table.add_row([strr, mse, rmse, mae, str(MApe)+'%', str(r2*100)+'%'])

return mse_dic,rmse_dic, mae_dic, mape_dic, r2_dic, table
# 返回包含所有评估指标的字典。

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]张惟东.基于CNN-LSTM-Attention的短期电力负荷预测研究[D].兰州理工大学,2022.

[2]姚芳,汤俊豪,陈盛华,等.基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J].电力系统保护与控制, 2023, 51(16):158-167.

[3]姚芳,汤俊豪,陈盛华,等.基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J].电力系统保护与控制, 2023, 51(16):158-167.

[4]姚程文、杨苹、刘泽健.基于CNN-GRU混合神经网络的负荷预测方法[J].电网技术, 2020, 44(9):8.DOI:10.13335/j.1000-3673.pst.2019.2058.

[5]谢志坚.基于CNN-BAS-GRU模型的短期电力负荷预测研究[J].现代计算机, 2023, 29(21):15-20.

[6]杨超.基于ISSA优化CNN-BiGRU-Self Attention的短期电力负荷预测研究[D].陕西理工大学,2024. 

🌈4 Python代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值