python classification_report输出到csv文件

今天想把classification_report的统计结果输出到文件中,我这里分享一下一个简洁的方式:

我的pandas版本:

pandas                   1.0.3

代码:

from sklearn.metrics import classification_report
report = classification_report(y_test, y_pred, output_dict=True)
df = pd.DataFrame(report).transpose()
df.to_csv("result.csv", index= True)

是不是很简单,下面是我导出来的一个结果:

参考文献

[1].scikit learn output metrics.classification_report into CSV/tab-delimited format. https://stackoverflow.com/questions/39662398/scikit-learn-output-metrics-classification-report-into-csv-tab-delimited-format

### 使用Python的随机森林算法读取和处理CSV文件 为了使用Python中的随机森林算法来处理CSV文件,可以遵循以下方法。这涉及数据预处理、模型训练以及预测阶段。 #### 数据准备与加载 首先,需要导入必要的库并加载CSV文件。Pandas是一个非常适合用于数据分析的强大工具,在此场景下尤为有用: ```python import pandas as pd from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, classification_report ``` 接着,通过`pandas.read_csv()`函数读入CSV文件,并查看前几行以了解其结构[^3]。 ```python data = pd.read_csv('test.csv') print(data.head()) ``` #### 特征工程与目标变量分离 假设最后一列为标签列,则其余部分作为输入特征矩阵X;而Y则代表输出向量即类别标签。需要注意的是,实际应用中可能还需要进一步的数据清洗工作,比如缺失值填充等操作。 ```python X = data.iloc[:, :-1].values # 所有行去掉最后一列 y = data.iloc[:, -1].values # 只保留最后一列 ``` #### 划分训练集和测试集 将原始数据划分为训练集合验证集两部分,以便后续评估模型性能。这里采用80%的数据作为训练样本,剩余20%用来检验模型效果。 ```python X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) ``` #### 构建随机森林模型 定义一个基于默认参数设置下的随机森林分类器实例对象rfc,并调用fit()接口完成对给定数据的学习过程。 ```python rfc = RandomForestClassifier(n_estimators=100, random_state=42) rfc.fit(X_train, y_train) ``` #### 模型评价 利用之前划分出来的测试子集来进行预测,并打印出准确率得分以及其他指标报告。 ```python predictions = rfc.predict(X_test) accuracy = accuracy_score(y_test, predictions) report = classification_report(y_test, predictions) print(f'Accuracy: {accuracy * 100:.2f}%\n{report}') ``` 以上就是整个流程的大致介绍,具体细节可能会根据不同任务有所调整。对于特定领域如遥感影像分析来说,还可以探索更多高级特性,例如特征重要性的衡量等[^1]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

农民小飞侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值