最近做东西需要经济学相关的只是,所以研究了一下四因子模型,从机器学习的角度,感觉就是一个线性回归,可能是金融领域数据噪声性质比较强,不适合复杂的模型,这种简单的线性回归及其变体会更适合一点,我这里分析一下四因子模型。简单直接,我们上公式:
R i t − R f t = α i + β i m × ( R m t − R f t ) + γ i × ( R m t − R f t ) 2 + β i s m b × S M B t + β i h m l × H M L t + β i m o m × M O M t + ϵ i t R_{it}-R_{ft}=\alpha_{i} + \beta_{im} \times (R_{mt}-R_{ft}) + \gamma_{i} \times (R_{mt}-R_{ft})^2+\beta_{ismb} \times SMB_{t} + \beta_{ihml} \times HML_{t}+\beta_{imom} \times MOM_{t}+\epsilon_{it} Rit−Rft=αi+βim×(Rmt−Rft)+γi×(Rmt−Rft)2+βismb×SMBt+βihml×HMLt+βimom×MOMt+ϵit
公式是这么写的,下面解释一下这个公式. SMB = 小市值 - 大市值,市值因子;HML = 高价值 - 低价值,价值因子, MOM是动量因子。 R i t − R f t R_{it}-R_{ft} Rit−Rft基金i在month t的溢价, R m t − R f t R_{mt}-R_{ft} Rmt−Rft是市场在month t的溢价。
我读完这个公式,发现其中的 β \beta β参数是需要学习出来的,一看这就是一个典型的最小二乘法问题,说通俗一点其实就是一个线性回归的问题。本人金融知识学习有限,机器学习知识比较擅长,所以经济学的角度等我后续搞明白之后再补上。
知道是线性回归,实现起来就比较简单了,可以使用scikit-learn也可以使用statsmodels