【机器学习搞钱】Treynor-Mazu四因子模型

最近做东西需要经济学相关的只是,所以研究了一下四因子模型,从机器学习的角度,感觉就是一个线性回归,可能是金融领域数据噪声性质比较强,不适合复杂的模型,这种简单的线性回归及其变体会更适合一点,我这里分析一下四因子模型。简单直接,我们上公式:

R i t − R f t = α i + β i m × ( R m t − R f t ) + γ i × ( R m t − R f t ) 2 + β i s m b × S M B t + β i h m l × H M L t + β i m o m × M O M t + ϵ i t R_{it}-R_{ft}=\alpha_{i} + \beta_{im} \times (R_{mt}-R_{ft}) + \gamma_{i} \times (R_{mt}-R_{ft})^2+\beta_{ismb} \times SMB_{t} + \beta_{ihml} \times HML_{t}+\beta_{imom} \times MOM_{t}+\epsilon_{it} RitRft=αi+βim×(RmtRft)+γi×(RmtRft)2+βismb×SMBt+βihml×HMLt+βimom×MOMt+ϵit

公式是这么写的,下面解释一下这个公式. SMB = 小市值 - 大市值,市值因子;HML = 高价值 - 低价值,价值因子, MOM是动量因子。 R i t − R f t R_{it}-R_{ft} RitRft基金i在month t的溢价, R m t − R f t R_{mt}-R_{ft} RmtRft是市场在month t的溢价。

我读完这个公式,发现其中的 β \beta β参数是需要学习出来的,一看这就是一个典型的最小二乘法问题,说通俗一点其实就是一个线性回归的问题。本人金融知识学习有限,机器学习知识比较擅长,所以经济学的角度等我后续搞明白之后再补上。

知道是线性回归,实现起来就比较简单了,可以使用scikit-learn也可以使用statsmodels

参考文献

加入情绪指标的中国版四因子模型,能摸清A股的脉搏吗?
四因子模型
套利定价理论(APT)

本表以Fama-French三因子资产定价模型为依据,提供市场溢酬因子(Rm-Rf),市值因子(SMB)和账面市值比因子(HML)的月序列数据。 表中计算所用的无风险收益数据选择标准为:开始--2002年8月6日用三个月期定期银行存款利率; 2002年8月7日--2006年10月7日用三个月期中央银行票据的票面利率; 2006年10月8日--当前,用上海银行间3个月同业拆放利率。 三因子数据包括: 市场溢酬因子__流通市值加权 Rm-Rf 市值因子__流通市值加权 SMB 账面市值比因子__流通市值加权 HML 市场溢酬因子__总市值加权 Rm-Rf 市值因子__总市值加权 SMB 账面市值比因子__总市值加权 HML 有以下3种方式计算的月惯性因子(又称动量因子)。 计算方法1:惯性因子=前n个月累积收益最高的30%的所有股票组合加权收益率-前n个月累积收益最低的30%的所有股票组合加权收益率。 计算方法2:惯性因子=前n个月累积收益最高的10%的所有股票组合加权收益率-前n个月累积收益最低的10%的所有股票组合加权收益率。 计算方法3:惯性因子=前n个月累积收益大于零的所有股票组合加权收益率-前n个月累积收益小于零所有股票组合加权收益率。 其中,n=3、4、5、6、7、8、9、10、11、12、18、24;加权方式为等权、流通市值加权、总市值加权。 在Carhart因子模型经典文献中,惯性因子=前11个月累积收益最高的30%的股票组合等权收益率-前11个月累积收益最低的30%的股票组合等权收益率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

农民小飞侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值