输入图片大小为200×200,依次经过一层卷积(kernel size 5×5,padding 1,stride 2)

感想

今年对我来说是非常重要的一年,面临着找工作和发论文的压力,因此,我打算把我机器学习刷题之路记录下来,我认为刷题要把原理弄明白,所以我整理了分析的内容,作为对自己的提高,也希望对大家能够有所帮助。

Problem

 

输入图片大小为200×200,依次经过一层卷积(kernel size 5×5,padding 1,stride 2),pooling(kernel size 3×3,padding 0,stride 1),又一层卷积(kernel size 3×3,padding 1,stride 1)之后,输出特征图大小为:

答案:97

analysis

 

计算尺寸不被整除只在GoogLeNet中遇到过。卷积向下取整,池化向上取整。

(200-5+2*1)/2+1 为99.5,取99

(99-3)/1+1 为97

(97-3+2*1)/1+1 为97

我搜索的公式:

这里提供一个计算每一层输出图像的size的公式。无论是卷积层还是pooling层,公式都是这样的:

( input_size + 2*padding - kernel_size ) / stride+1 = output_size

其中,padding指对input的图像边界补充一定数量的像素,目的是为了计算位于图像边界的像素点的卷积响应;kernel_size指卷积核的大小;stride指步长,即卷积核或者pooling窗口的滑动位移。另外需要注意,上面公式建立在所有参数都为整数的假设基础上。

如果padding在题目中指的是图片外围补充边界的话,我模拟手算了一下,确实是这样的,可能题目就是题目,我们要按照题目的意思来才行吧。

参考文献

[1].卷积神经网络.http://blog.csdn.net/l281865263/article/details/46378149

[2].机器学习笔试题.http://blog.csdn.net/u011204487/article/details/77370278

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

农民小飞侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值