① 错误率与精度
错误率和精度是分类问题中常用的性能度量指标,既适用于二分类任务,也适用于多分类任务.
-
错误率(error rate):指分类错误的样本占样本总数的比例,即 ( 分类错误的数量 / 样本总数数量)
-
精度(accuracy):指分类正确的样本占样本总数的比例,即 (分类正确的数量 / 样本总数数量)
精 度 = 1 − 错 误 率 精度 = 1 - 错误率 精度=1−错误率
② 查准率、召回率与F1得分
对于二分类问题,可以将真实类别、预测类别组合为“真正例”(true positive)、“假正例”(false positive)、“真反例”(true negative)、“假反例”(false negative)四种情形,见下表:
-
样例总数:TP + FP + TN + FN
-
查准率: TP / (TP + FP),表示分的准不准
-
召回率:TP / (TP + FN),表示分的全不全,又称为“查全率”
-
F1得分:
f 1 = 2 ∗ 查 准 率 ∗ 召 回 率 查 准 率 + 召 回 率 f1 = \frac{2 * 查准率 * 召回率}{查准率 + 召回率} f1=查准率+召回率2∗查准率∗召回率
例:
假设有10只动物,其中猫有16只,狗有4只。
根据特征预测猫。
模型执行,输出10只,猫7只,狗3只。
样本:
- 正例:属于这一类的样本。 猫
- 负例:不属于这一类的样本。 狗
查准率(Precision):
被正确检索的样本数 与 被检索到样本总数之比。即:TP / (TP + FP)
.
在本例中,正确检索到了7只猫,总共检索出10只动物,所以 Precision = 7 / 10
.
召回率(Recall ):
被正确检索的样本数 与 应当被检索到的样本数之比。即:TP / (TP + FN)
.
在本例中,正确检索到了7只猫,应当检索16只,所以 Recall = 7 / 16
.