学习 TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation 医学分割

Fusing Transformers and CNNs for Medical Image Segmentation

Abstract

Medical image segmentation - the prerequisite of numerous clinical needs - has been significantly prospered by recent advances in convolutional neural networks (CNNs). However, it exhibits general limitations on modeling explicit long-range relation, and existing cures, resorting to building deep encoders along with aggressive downsampling operations, leads to redundant deepened networks and loss of localized details. Hence, the segmentation task awaits a better solution to improve the efficiency of modeling global contexts while maintaining a strong grasp of low-level details. In this paper, we propose a novel parallel-in-branch architecture, TransFuse, to address this challenge. TransFuse combines Transformers and CNNs in a parallel style, where both global dependency and low-level spatial details can be efficiently captured in a much shallower manner. Besides, a novel fusion technique - BiFusion module is created to efficiently fuse the multi-level features from both branches. Extensive experiments demonstrate that TransFuse achieves the newest state-of-the-art results on both 2D and 3D medical image sets including polyp, skin lesion, hip, and prostate segmentation, with significant parameter decrease and inference speed improvement

Introduction

CNN

  • CNN在诸多医学图像分割任务中取得了优异性能,如多器官分割、肝部病变分割、脑补分割等,显示出CNN在建模特定任务特征表示的强大能力
  • 缺点:CNN的一大问题是在捕获全文上下文信息方面缺乏效率,如果通过堆叠、扩大感受野的方式则需要连续的下采样-卷积操作,使得网络结构十分深,这一过程也会导致局部信息的丢失,而拒不细节信息对于密集预测任务也十分重要

Transformer

  • 缺点:transformer也有自身局限,就是无法较好的建模细粒度特征,尤其是对于医学图像,细节特征十分重要,其在建模局部信息时缺少空间的归纳偏执

TransFuse

  • 可以有效的捕获低层次空间特征和高级语义特征
  • 无需搭建深层次网络就可以减轻梯度消失、特征无法有效复用等问题
  • 模型效率和推理速度有了很大的提升,并且部署在云端或终端的效率也有很大提升

在这里插入图片描述

Proposed Method

two parallel branches

  • CNN branch

    • 增加感受野,将特征从局部到全局
  • Transformer branch

    • 从全局自注意力开始,最后恢复局部细节
  • two benefits

    • 有效的发挥CNN和Transformer各自的优势,在不需要搭建深层次网络的同时,有效捕获全局信息,还能保持精确的low-level信息
    • BIfusion在提取特征的过程中,同时利用了CNN和Transformer的不同性质,从而融合的更好

Transformer branch

  • HXWX3的输入切成patch(patch number= 16);随后patch经过线性映射并展平,在送入Transformer之前还会嵌入可训练的位置信息。

  • Transformer中包含L层MSA和MLP

    • S A ( z i ) = s o f t m a x ( q i k T D h ) v SA(z_i) = softmax(\frac{q_ik^T}{\sqrt{D_h}})v SA(zi)=softmax(Dh qikT)v
  • Transformer encoder处理后的结果会送到Decoder,在解码器部分则采用渐进上采样的方式(PUP),类似SETR的操作

  • 首先会将Z^L的输出reshape到原始二维维度,拥有D0个通道;然后使用两个连续的上采样-卷积层来恢复空间分辨率,最终获得不同大小的上采样结果,与CNN的feature map进行特征融合

CNN branch

  • 使用了ResNet作为CNN的分支
  • 保留前4层的输出,然后将他们与Transformer的结果融合获得融合后的特征提取

BiFusion Module

  • 融合CNN和Transformer提取的特征

    • 通道注意力

      • t ^ i = C h a n n e l A t t n ( t i ) \widehat{t}^i = ChannelAttn(t^i) t i=ChannelAttn(ti)

      • SE-Block

    • 空间注意力

      • g ^ i = C h a n n e l A t t n ( g i ) \widehat{g}^i = ChannelAttn(g^i) g i=ChannelAttn(gi)

      • CBAM block 作为空间滤波器,增强局部细节,抑制无关区域,低层次的CNN特征会存在噪声

    • 3x3卷积

      • b ^ i = C o n v ( t i W 1 i ⋅ g i W 2 i ) \widehat{b}^i = Conv(t^iW^i_1 \cdot g^iW^i_2) b i=Conv(tiW1igiW2i)

      • Hadamard product,矩阵点乘,对两个分支的特征之间的细粒度交互进行建模

    • 残差连接

      • f i = R e s i d u a l ( [ b i , t i , g i ] ) f^i = Residual([b^i,t^i,g^i]) fi=Residual([bi,ti,gi])
    • 利用attention-gate(AG)来生成最终的分割结果

      • f i + 1 = C o n v ( [ U p ( f i ) , A G ( f i + 1 , U p ( f i ) ) ] ) f^{i+1} = Conv([Up(f^i), AG(f^{i+1}, Up(f^i))]) fi+1=Conv([Up(fi),AG(fi+1,Up(fi))])

Loss Function

  • 加权mIoU损失
  • BCE损失

Experiments and Results

Data Acquisition

  • 息肉分割

    • Kvasir , CVC-ClinicDB , CVC-ColonDB ,EndoScene and ETIS

      • 352×352
  • 皮肤损伤

    • 2017 International Skin Imaging Collaboration skin lesion segmentation dataset (ISIC2017)

      • 192×256
  • 髋关节分割

  • 前列腺分割

    • volumetric Prostate Multi-modality MRIs from the Medical Segmentation Decathlon

      • 320 × 320

Implementation Details

  • TransFuse-S

    • ResNet-34 (R34) and 8-layer DeiT-Small (DeiT-S)
  • TransFuse-L

    • Res2Net-50 and 10-layer DeiT-Base (DeiT-B)
  • TransFuse-L*

    • ResNetV2-50 and ViT-B

Evaluation Results

  • Results of Polyp Segmentation

    • mean Dice

      • Dice系数是一种集合相似度度量函数,通常用于计算两个样本的相似度,取值为[0,1]。
    • mIOU

    • Table1展示了息肉分割的对比结果,TransFuse-S/L与其他CNN网络相比均达到了SOTA,而且参数量比PraNet等减少了20%,实时性也更好

    • 而预训练过的TransFuse-L*的性能也优于SETR和TransUNet

在这里插入图片描述

  • Results of Skin Lesion Segmentation

    • 在皮肤损伤分割实验中性能指标是Jaccard指数和Dice系数以及逐像素点的accuracy。
    • Table 2中,TransFuse性能优于UNet++,同时不需要任何预处理或后处理,而UNet++需要使用预训练的R34作为主干

在这里插入图片描述

  • Results of Hip Segmentation

    • Hausdorff Distance (HD)
    • Average Surface Distance (ASD)
    • Table 3:髋关节分割的对比结果,主要需要分割腓骨、左股骨、右股骨。与UNet++和HRNet相比,TransFuse在HD和ASD这两个指标参数上均更加优秀,充分证明了本文提出的TransFuse可以有效捕获精细的结构,生成更加清晰准确的轮廓

在这里插入图片描述

  • Results of Prostate Segmentation

    • nnUNet是目前在前列腺分割排名第一的分割网络
    • Table 4:TransFuse与nnUMet的对比结果。可以看到与nnUNet-3d相比,TransFuse-S不仅性能更好,而且参数量减少了41%,吞吐率增加了50%。

在这里插入图片描述

  • Ablation Study

    • Table 5:并行分支的消融实验,Table 6展示的是BiFusion的消融实验。
    • 可以看到两个分支选择CNN搭配Transformer性能是最佳的,BiFusion结合空间注意力、通道注意力、计算内积都会提升性能。
      在这里插入图片描述

在这里插入图片描述

Conclusion

评审意见

官方评审意见:https://miccai2021.org/openaccess/paperlinks/2021/09/01/496-Paper0016.html

评分:6,6,6

参考:http://t.csdn.cn/d2JR8

  • 1
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
transfuse训练是指将某种知识或技能从一个人或一个群体转移到另一个人或群体的过程。这种训练的目的是通过教育和培训,将特定的技能、经验和知识传授给需要的人,以提高他们的能力和水平。 transfuse训练通常以教师或专家担任指导者的角色,他们将他们的知识和技能转递给学习者。这种训练可以以各种形式进行,包括课堂教学、实践操作、实地考察、讲座、工作坊等等。它可以发生在学校、培训机构、工作场所或社区等不同的环境中。 通过transfuse训练,学习者可以从经验丰富的教师或专家那里获得宝贵的知识和技能。他们可以学习到新的理论知识、实践技巧和解决问题的方法,从而提高自己在特定领域的能力。这种训练还可以增强学习者的自信心,激发他们的热情和动力,使他们能够更好地适应和应对各种挑战和机遇。 transfuse训练对个人和社会的发展都起着重要的作用。对个人而言,它可以提高他们的就业竞争力,增强他们的社交和沟通能力,实现自我价值的实现。对社会而言,transfuse训练可以培养专业人才,推动技术和文化的传承,促进社会进步和创新发展。 总之,transfuse训练是一种重要的教育和培训方式,通过传递知识和技能,促进个人和社会的发展。无论是在学校、工作场所还是社区,通过这种训练,人们可以不断提升自己的能力,为个人的成功和社会的繁荣做出贡献。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值