pandas.DataFrame.notnull返回非空值

>>> import pandas as pd         
>>> df = pd.read_csv('test.csv')
>>> print df
       name   id
0  ZhangSan  1.0
1      LiSi  2.0
2    WangEr  NaN
3     WanZi  4.0
>>> print df['id'].notnull()    
0     True
1     True
2    False
3     True
Name: id, dtype: bool
>>> print df[df['id'].notnull()]
       name   id
0  ZhangSan  1.0
1      LiSi  2.0
3     WanZi  4.0

上面用了两个函数:

1.read_csv读取csv文件

2.notnull(),返回值是布尔型的矩阵。再取df[布尔型矩阵]返回的是id为非空的行

关于notnull()的官方解释:http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.notnull.html


执行df.notnull()的结果是

     name   id

0   True    True

1   True    True

2   True    False

3   True    True

### Pandas DataFrame `info` 方法详解 #### 方法概述 `DataFrame.info()` 是一个常有用的工具,可以快速查看数据框的基本信息。此方法会打印有关 DataFrame 的摘要信息,并返回 None[^3]。 #### 参数解释 - **verbose**: 控制显示的详细程度,默认情况下为 True。如果设置为 False,则仅当列数小于最大可见列 (`max_cols`) 时才提供完整输出。 - **buf**: 输出目标,默认是 sys.stdout。可以通过传递 StringIO 对象或其他具有 write 方法的对象来改变输出方向。 - **max_cols**: 当 verbose 设置为 False 时生效,控制最多展示多少列的信息,默认值为 100 列。 - **memory_usage**: 是否计算内存消耗,默认为 True。接受三个选项:"no", "True"(或 None),以及"deep";其中 "deep" 表示更精确地估算实际占用间。 - **show_counts**: 显示空值计数的功能,在较新版本中已弃用,建议使用 notnull() 或 count() 替代。 #### 功能特点 调用 `df.info()` 可获得如下信息: - 数据帧内的条目总数; - 每一列的数据类型 (dtype); - 缺失(non-null)数值的数量; - 近似使用的内存大小(字节单位)。这有助于评估加载到内存中的数据量是否合理。 ```python import pandas as pd data = { 'Name': ['Alice', 'Bob', 'Charlie'], 'Age': [25, 30, 35], 'City': ['New York', 'Paris', 'London'] } df = pd.DataFrame(data) print(df.info()) ``` 上述代码将创建一个新的 DataFrame 并通过 `.info()` 展现其基本信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值