动手深度学习-本地安装及运行指北

03 安装

下载视频教程

https://www.bilibili.com/video/BV18K411w7Vs/?spm_id_from=333.788&vd_source=fc0826b0b80d54f13a7d352ddb23461b

image-20230713160619075

image-20230712235143004

  • conda已经在本地安装过anaconda,anaconda当中包含了conda这个库

CUDA下载

这里版本考虑到pytorch匹配 选择CUDA11.8的版本

image-20230713104140693

一路默认安装即可,后面需要在高级系统设置->环境变量当中将nvidia-smi.exe添加到path当中,cmd窗口执行nvidia-smi即可看到对应的信息

注意 runtime verision和vidia驱动显示的驱动可以不一致,runtime version是实际跑的cuda的版本,也即前面下载的11.8

image-20230713113233495

miniconda下载

这里使用anaconda

pytorch下载

选择对应CUDA的版本,使用pip到cmd窗口进行安装

image-20230713113455892

安装完成后执行下列命令,可以正常跑通

image-20230713114114082

jupyter笔记本下载

https://zh.d2l.ai/

安装报错,需要c++14version以上的编译器,下载visual studio…

image-20230713115341913

选择c++桌面开发

image-20230713115548989

image-20230713115858600

发现安装好vs之后依旧报错…

image-20230713153955220

软件version
python3.10.9

anaconda创建新的环境

# 创建名为d2l的环境
conda create --name d2l python=3.10 -y
# 激活这个环境
conda activate d2l
d2l-0.15.1-py3-none-any.whl
# 退出这个环境
 source deactivate

d2l下载报错解决办法

到官网:https://www.cnpython.com/pypi/d2l/download 下载d2l的包到本地

cmd窗口切换到d2l包所在位置,执行

 pip install d2l-0.15.1-py3-none-any.whl

然后可以看到d2l很顺畅得被下载好,使用conda list命令可以看到d2l包已经被下载好

image-20230713154306854

使用jupyter notebook命令使用jupyter,注意, d2l-zh的位置要和whl的位置摆在一块

image-20230713155152433

image-20230713155107966

使用教程

jupyter notebook - > d2l-zh -> pytorch/chapter_convolutional-modern/resnet.ipynb

可能存在内核问题,需要在代码前加上:

import os
os.environ ["KMP_DUPLICATE_LIB_OK"] ="TRUE"

image-20230713160910000

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值