03 安装
下载视频教程
https://www.bilibili.com/video/BV18K411w7Vs/?spm_id_from=333.788&vd_source=fc0826b0b80d54f13a7d352ddb23461b
- conda已经在本地安装过anaconda,anaconda当中包含了conda这个库
CUDA下载
这里版本考虑到pytorch匹配 选择CUDA11.8的版本
一路默认安装即可,后面需要在高级系统设置->环境变量当中将nvidia-smi.exe
添加到path当中,cmd窗口执行nvidia-smi
即可看到对应的信息
注意 runtime verision和vidia驱动显示的驱动可以不一致,runtime version是实际跑的cuda的版本,也即前面下载的11.8
miniconda下载
这里使用anaconda
pytorch下载
选择对应CUDA的版本,使用pip到cmd窗口进行安装
安装完成后执行下列命令,可以正常跑通
jupyter笔记本下载
https://zh.d2l.ai/
安装报错,需要c++14version以上的编译器,下载visual studio…
选择c++桌面开发
发现安装好vs之后依旧报错…
软件 | version |
---|---|
python | 3.10.9 |
anaconda创建新的环境
# 创建名为d2l的环境
conda create --name d2l python=3.10 -y
# 激活这个环境
conda activate d2l
d2l-0.15.1-py3-none-any.whl
# 退出这个环境
source deactivate
d2l下载报错解决办法
到官网:https://www.cnpython.com/pypi/d2l/download 下载d2l的包到本地
cmd窗口切换到d2l包所在位置,执行
pip install d2l-0.15.1-py3-none-any.whl
然后可以看到d2l很顺畅得被下载好,使用conda list
命令可以看到d2l包已经被下载好
使用jupyter notebook命令使用jupyter,注意, d2l-zh的位置要和whl的位置摆在一块
使用教程
jupyter notebook - > d2l-zh -> pytorch/chapter_convolutional-modern/resnet.ipynb
可能存在内核问题,需要在代码前加上:
import os
os.environ ["KMP_DUPLICATE_LIB_OK"] ="TRUE"