[9]CNN Architectures—CNN架构

本文介绍了多种卷积神经网络(CNN)架构,包括LeNet-5、AlexNet、ZFNet、VGGNet、GoogleNet(Inception模块)和ResNet(残差网络)。每个模型的特色和改进点被详细阐述,如VGGNet使用小卷积核增加网络深度,GoogleNet的Inception模块以捕捉不同尺度信息,以及ResNet通过残差学习解决深度网络的优化问题。
摘要由CSDN通过智能技术生成

LeNet-5

在这里插入图片描述

第一次用CNN来做手写体识别,网络比较浅,只有5层。

AlexNet

在这里插入图片描述

  • 其在LeNet上做了一些改进,同时由于当时GPU容量不足,其特征图的前向计算和梯度的反向传播是在两张GPU上并行进行的。

在这里插入图片描述

在这里插入图片描述

  • 其获得了2012年的ImageNet的冠军

ZFNet

  • 其在AlexNet上做了一些超参数的优化,但是主要结构还是类似的,获得了2013年的ImageNet的冠军。

在这里插入图片描述

VGGNet

在这里插入图片描述

  • 其的关键特点是固定使用 3X3尺寸的卷积核,和 2X2尺寸的池化核,相比于AlexNet其的深度更深,当然,参数也更多。
  • Q: 为什么使用 3X3 的卷积核?*
  • A: 两层 3 X 3 的 conv(步长为1),堆叠起来感受野(receptive field)与一个 7 * 7 的卷积核相同。但是,其参数量更小,而且能够组成更深的网络,更多的非线性激活,形成的特征更丰富。即参数量为
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值