基于灰度图像的质心算法和三角测距原理(学习笔记)

 

本文介绍纯理论部分,至于FPGA实现就不多说了。

常见的质心算法有以下几种,可以应用于不同的场合。

(1)普通质心算法

   

其中^{I_{ij}}为二维图像上每个像素点所接收到的光强,该算法适用于没有背景噪声,背景噪声一致或信噪比较高的情况。

 

(2) 强加权质心算法

 

        其原理是将光斑中心较近的部分区域像素值增强,使得对光斑影响较大点的影响力进一步加大,提高质心探测精度,即使光斑形状不近似高斯分布,该方法依然能较准确的探测光斑质心。

 

(3)阈值质心算法 
先对图像进行阈值分割,再使用COG算法,此时的质心探测误差要小于只用COG算法时的质心探测误差。该算法关键在阈值的选取。选取阈值的方法有很多。常用的有固定值阈值,经验阈值和直方图阈值。目前应用较广泛的是自适应阈值。自适应阈值具有阈值随图像的变化而变化以达到最好效果的优点。自适应阈值中最常用的是小波自适应阈值。该方法可以很好的去除高斯白噪声。但传统的小波变换在信号降噪中计算不足,所以可以将小波降噪算法进行改进。

 

 

图像质心即图像灰度的重心,设图像有i,j两个方向,m,n分别为i,j方向像素的数量,(,)gij为像素点(,)ij处的灰度值,则图像质心位置坐标表达

  

 

 

 

 

单点激光测距原理

单点激光测距原理图如图所示, 

 

 

激光头Laser与摄像头在同一水平线(称为基准线)上,其距离为s,摄像头焦距为f,激光头与基准线的夹角为β。激光头Laser与摄像头在同一水平线(称为基准线)上。假设目标物体Object在点状激光器的照射下,反射回摄像头成像平面的位置为点P。

 

由几何知识可作相似三角形,激光头、摄像头与目标物体组成的三角形,相似于摄像头、成像点P与辅助点P′。

  设 PP′=x。则由相似三角形可得:  

                                                           f/x=q/s  ==>  q=fs/x                    

其中  X可分为两部分计算:          X=x1+x2= f/tan⁡β + pixelSize* position

 其中pixelSize是像素单位大小, position是成像的像素坐标相对于成像中心的位置。

 最后,可求得距离d:                       d=q/sin⁡β

 


线状激光三角测距原理

 

将激光光条的中心点P1、成像点P1′、摄像头、激光头作为基准面,中心点P1就符合单点结构光测距。对于任一点(该点不在基准面上)

如上图所示,将成像平面镜像到另一侧。

其中P1′,P2′和分别是P1和P2的成像位置,对于点P2、成像点P2′、摄像头、激光头所形成的平面,与基准面存在夹角θ,也符合单点结构光测距。此时的焦距为f′,x的几何意义同单点激光测距原理类似。

如上图所示,将成像平面镜像到另一侧。其中P1′,P2′和分别是P1和P2的成像位置,
     

 由相似三角形原理:    

                                                               d'/baseline=f'/x


d′是P2与baseline所成平面上P2到底边的高(类比于单点激光测距原理中的q)。同样x可分为两部分计算d′是P2与baseline所成平面上P2到底边的高(类比于单点激光测距原理中的q)。

同样x可分为两部分计算                       x=f'/tan⁡β   + pixelSize* position

上述中的平面与基准面的夹角为θ上述中的平面与基准面的夹角为θ
                                                                   f'/f=cos⁡θ 

                                                                    tan⁡θ=(|P2'.y-P1'.y|)/f


可求得f′:可求得f′:
                                                                 f'=f/cos⁡(arctan⁡((P2'.y-P1'.y)/f))  
 

代入式中可求得d.

 

本文的参考资料来自以下链接

 

https://www.sogou.com/link?url=DSOYnZeCC_owkDvmYG0gMz-JrNZwwuWKymS_APuk7tP1C5Jjw8b4Bt86nTG2etG3NQv8G0S-AYCuLaNMGv04nw..

https://wenku.baidu.com/view/d1529dbef121dd36a32d8272.html?sxts=1547103591980

https://blog.csdn.net/Lrisfish/article/details/77838690?utm_source=copy

另附  matlab2018云盘链接  

密码  lw68 pan.baidu.com/s/11NVkjPBX3qYmCNQuC_hX0Q

 

相关推荐
©️2020 CSDN 皮肤主题: 书香水墨 设计师:CSDN官方博客 返回首页