图像采样点集
给定一个二维区域
D
D
D上的重要性密度
I
I
I,在这个区域上找出一个采样的点集,使其局部密度正比于重要密度
I
I
I。如下图所示,图片中亮的区域多采点,暗的区域少采点。
这篇文章,提出了一种新方法,可以有效地生成给定重要性密度的2D区域上的采样模式.Penrose切片被细分为多个层次,从而创建了足够数量的采样点。 这些点使用斐波那契数系统进行编号,并且这些数字用于针对重要性密度的局部值对样本进行阈值处理。 使用预先计算的校正向量用于改善采样模式的光谱特性。 该技术是确定性的,并且非常快。 采样时间随所需样本数呈线性增长。 通过基于重要性的环境映射说明了该技术具有足够的通用性,可用于各种计算机图形应用程序,例如光传输计算,数字半色调,几何处理和各种渲染技术。采样在计算机图形学中无处不在。 许多研究人员研究了采样特性如何影响诸如光线跟踪,蒙特卡洛路径跟踪,运动模糊,几何处理,数字半色调等应用程序中获得的结果的质量。
为了解决这个问题,已经开发了许多不同的技术。其中一些被称为松弛技术,可以产生质量卓越的解决方案。特别是,劳埃德(Lloyd)的放松(Lloyd 1983)及其变体导致质心Voronoi镶嵌[Du等。 1999]。不幸的是,为此付出的代价是很高的:放松技术从根本上说是缓慢的,因为它们必须迭代地解决每个点相对于所有其他点的邻居确定问题。即使是最先进和最优化的实现,也仍然很慢。劳埃德放宽的硬件辅助实现[Hoffet al。 [1999]的速度更快,但受到帧缓冲区分辨率的限制。一些技术使用一种随机采样(投掷飞镖)的形式,例如[McCool and Fiume 1992]中提出的方法,其中根据与先前点的接近程度添加或拒绝随机点。由于这些方法的收敛速度较低,因此它们的运行时间最多只能与劳埃德(Lloyd)的顺序相同。这些方法是严格降序的,并且可能对初始点集非常敏感。 数字半色调处理中使用的其他方法称为误差扩散技术,因为只检查了每个点的非常有限的邻域,所以速度要快得多。 误差扩散的主要缺点是其所运行的元素的离散性质:它们必须是具有固定空间分辨率的矩形图块。 这极大地限制了误差扩散作为计算机图形学的通用采样技术的使用,而计算机图形学通常需要多分辨率采样。 [2003年]劳埃德(Lloyd)的放松方式胜于错误扩散。
在运行时间方面可以与我们的比较的另一种快速采样技术是使用从概率密度生成的累积密度函数(CDF),并使用分层蒙特卡洛技术对其进行采样。 尽管这种方法可以生成反映所需局部密度的点,但它们并没有遵循所需的蓝噪声分布,如图13所示。 [2002]使用了类似的方法,使用了一些众所周知的低差异序列,例如Halton和Sobol序列(请参阅[Niederreiter 1992]与CDF结合使用),以便在NPR上下文中以交互速率分布图形基元。 尽管这种确定性方法非常有前途,但令人信服的多用途结果尚待观察(见图13)。
在本文中,介绍了一种新颖的基于Penrose切片的重要性采样技术,该技术比现有技术具有某些优势。 它属于点采样的族,也就是说,每个点都独立于其他点进行处理。 每个点的处理都很简单并且计算上不昂贵,这保证了我们算法的极高速度。 此外,由于离线优化和专门设计的查询表,采样质量很高,接近于中心三角Voronoi镶嵌的质量。 查找表的大小合理地小(通常小于1K的数据)。 无需依赖于数据的预先计算。 技术是多分辨率的,可以成功应用于高动态范围图像(我们将在第5节中对此进行说明)。
本文的其余部分安排如下。 在第2节中,我们回顾了Penrose拼贴的一些历史事实和属性。 在第3节中,我们描述了采样系统的核心。 在第4节中,我们通过高级放松来丰富基本技术,从而在所有重要级别上产生几乎完美的蓝噪声傅立叶光谱。 在第5节中,作为案例研究,我们将提出的技术应用于基于重要性的环境映射。 最后,在第6和第7节中,我们讨论了未来的工作并得出了一些结论。
彭罗斯瓷砖
1970年代初期,现代物理学家和数学家罗杰·彭罗斯(Roger Penrose)被开普勒的画迷住了。他以某种方式对其进行了修改,以便能够使用一组类似的图块非周期性地对平面进行图块化。而且他做得更多:他发现引入特殊的匹配规则(例如,图块边缘上的标记)将排除图块的任何周期性排列。尽管如此,平铺显示了明显可识别的本地顺序。该平铺属于非周期性结构的族,即非周期性由匹配规则强制的结构。彭罗斯(Penrose)在[彭罗斯(Penrose)1974]中发表了有关他的发现的第一篇文章。后来,彭罗斯(Penrose)发表了一篇论文,他提出了三种不同但紧密相关的非周期性平铺系统[Penrose 1979]。其中一个如图2(右上图)所示,只有两个极其简单的形状,两个不同的菱形。与匹配的规则。 1977年,马丁·加德纳(Martin Gardner)在《科学美国人》杂志上发表了一篇专栏文章,对彭罗斯的发现充满热情[Gardner 1977]。加德纳(Gardner)出版后,彭罗斯(Penrose)拼贴开始为许多数学家,物理学家和化学家所熟知。