UVA 11806 Cheerleaders(容斥原理)

62 篇文章 0 订阅
9 篇文章 0 订阅
题目地址:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2906

思路:A表示第一行无石子,B表示最后一行无石子,C表示第一列无石子,D表示最后一列无石子。A=B=c[(n-1)*m][k],C=D=c[n*(m-1)][k]。tot=c[n*m][k],运用容斥原理即可。此处用二进制简化讨论过程。

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long LL;
const int mod=1e6+7;
const int maxn=550;
int C[maxn][maxn];
void prepare()
{
    for(int i=0;i<=500;i++) C[i][0]=1;
    for(int i=1;i<=500;i++)
    {
        for(int j=1;j<=i;j++)
        {
            C[i][j]=(C[i-1][j-1]+C[i-1][j])%mod;
        }
    }
}
int main()
{
    prepare();
    int t,cas=0;
    scanf("%d",&t);
    while(t--)
    {
        int n,m,k,sum=0;
        scanf("%d%d%d",&n,&m,&k);
        for(int S=0;S<16;S++)
        {
            int b=0,r=n,c=m;
            if(S&1) {r--;b++;}
            if(S&2) {r--;b++;}
            if(S&4) {c--;b++;}
            if(S&8) {c--;b++;}
            if(b&1) sum=(sum+mod-C[r*c][k])%mod;
            else sum=(sum+C[r*c][k])%mod;
        }
        printf("Case %d: %d\n",++cas,sum);
    }
    return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值