题目地址:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2906
思路:A表示第一行无石子,B表示最后一行无石子,C表示第一列无石子,D表示最后一列无石子。A=B=c[(n-1)*m][k],C=D=c[n*(m-1)][k]。tot=c[n*m][k],运用容斥原理即可。此处用二进制简化讨论过程。
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long LL;
const int mod=1e6+7;
const int maxn=550;
int C[maxn][maxn];
void prepare()
{
for(int i=0;i<=500;i++) C[i][0]=1;
for(int i=1;i<=500;i++)
{
for(int j=1;j<=i;j++)
{
C[i][j]=(C[i-1][j-1]+C[i-1][j])%mod;
}
}
}
int main()
{
prepare();
int t,cas=0;
scanf("%d",&t);
while(t--)
{
int n,m,k,sum=0;
scanf("%d%d%d",&n,&m,&k);
for(int S=0;S<16;S++)
{
int b=0,r=n,c=m;
if(S&1) {r--;b++;}
if(S&2) {r--;b++;}
if(S&4) {c--;b++;}
if(S&8) {c--;b++;}
if(b&1) sum=(sum+mod-C[r*c][k])%mod;
else sum=(sum+C[r*c][k])%mod;
}
printf("Case %d: %d\n",++cas,sum);
}
return 0;
}