PaddleHub和PaddleNLP修改预训练模型及数据集存放路径

文章讲述了在Windows操作系统中,PaddleHub和PaddleNLP的内置数据集和模型默认下载位置,并指导如何通过设置HUB_HOME和PPNLP_HOME环境变量来改变下载路径,注意路径应避免使用中文字符。配置完成后,需重启生效。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


一、PaddleHub

内置数据集、模型会默认下载到$HOME/.paddlehub/下,通过配置环境变量可下载到指定路径:
配置环境变量HUB_HOME到非中文字符路径

二、PaddleNLP

内置数据集、模型会默认下载到$HOME/.paddlenlp/下,通过配置环境变量可下载到指定路径:
配置环境变量PPNLP_HOME到非中文字符路径


补充

以上是在Windows操作系统下
配置环境变量后,需要重启

### 如何预下载PaddleNLP模型资源 为了提前下载 PaddleNLP 的相关资源或模型,可以利用 `paddlenlp` 库提供的功能来实现这一目标。具体来说,在使用这些模型之前,可以通过编程方式指定并获取所需的模型文件。 对于想要预先下载的场景,通常会涉及到两个主要方面: #### 使用命令行工具进行预下载 可以直接通过 Python 脚本执行相应的 API 来触发模型及其依赖项的自动下载过程。下面是一个简单的例子展示如何做到这一点: ```python import paddlenlp as ppnlp model_name = "ernie-1.0" # 替换成实际使用的模型名称 tokenizer = ppnlp.transformers.ErnieTokenizer.from_pretrained(model_name) model = ppnlp.transformers.ErnieModel.from_pretrained(model_name) ``` 这段代码不仅能够初始化 tokenizer model 对象,还会在网络连接正常的情况下自动拉取对应的权重其他必要的资产到本地缓存目录下[^3]。 #### 设置自定义缓存路径 有时可能希望改变默认的存储位置以便更好地管理磁盘空间或是跨设备共享已下载的内容。这可通过设置环境变量 `PPNLP_HOME` 或者是在调用 from_pretrained 方法时传递 cache_dir 参数来达成目的。 ```python cache_directory = "./my_custom_cache" tokenizer = ppnlp.transformers.ErnieTokenizer.from_pretrained( model_name, cache_dir=cache_directory ) model = ppnlp.transformers.ErnieModel.from_pretrained( model_name, cache_dir=cache_directory ) ``` 这样就可以把所有的预训练模型及相关组件都保存在一个由自己控制的位置里了[^4]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

叫我阿亮就好了-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值