现代控制理论(5)——线性定常系统的综合


一、线性反馈控制系统的基本结构及特性

1.状态反馈

原系统 x ˙ = A x + B u , y = C x \dot x=Ax+Bu,y=Cx x˙=Ax+Bu,y=Cx
引入状态反馈: u = K x + v u=Kx+v u=Kx+v
系统变为 x ˙ = ( A + B K ) x + B v , y = C x \dot x=(A+BK)x+Bv,y=Cx x˙=(A+BK)x+Bv,y=Cx
传递函数矩阵: W ( s ) = C ( s I − ( A + B K ) ) − 1 B W(s)=C(sI-(A+BK))^{-1}B W(s)=C(sI(A+BK))1B

2.输出反馈

引入输出反馈:
u = H y + v u=Hy+v u=Hy+v
系统变为: x ˙ = ( A + B H C ) x + B v , y = c x \dot x=(A+BHC)x+Bv,y=cx x˙=(A+BHC)x+Bv,y=cx

3.输出到状态矢量导数的反馈

引入输出到 x ˙ \dot x x˙反馈:
x ˙ = A x + B u + G y \dot x=Ax+Bu+Gy x˙=Ax+Bu+Gy
系统变为: x ˙ = ( A + G C ) x + B u , y = C x \dot x=(A+GC)x+Bu,y=Cx x˙=(A+GC)x+Bu,y=Cx

状态反馈输出反馈不改变维数,可改变特征值

4.闭环系统的能控性与能观性

状态反馈不改变原系统的能控性,但不保证能观性不变
输出至输入的反馈不改变原系统的能控性与能观性

二、极点配置问题

1.用状态反馈能任意配置闭环极点的充要条件是原系统完全能控

求解状态反馈阵K的步骤:
1、验证原系统的能控性
2、写出闭环系统特征方程:
∣ λ I − ( A + B K ) ∣ = 0 |\lambda I-(A+BK)|=0 λI(A+BK)=0
3、写出希望的闭环系统特征方程
4、求出K

2.不能采用输出反馈来实现闭环系统极点的任意配置

3.由输出至 x ˙ \dot x x˙的反馈能任意配置极点的充要条件是原系统能观

求解反馈阵G的步骤:
1、验证原系统的能观性
2、写出闭环系统特征方程:
∣ λ I − ( A + G C ) ∣ = 0 |\lambda I-(A+GC)|=0 λI(A+GC)=0
3、写出希望的闭环系统特征方程
4、求出G

三、系统镇定问题

系统能通过反馈使系统极点具有负实部,则称该系统是能镇定的
对系统采用状态反馈能镇定的充要条件是不能控子系统渐近稳定
对系统采用输出反馈能镇定的充要条件是能控且能观的子系统输出反馈能镇定的,其余子系统是渐近稳定的
采用输出到 x ˙ \dot x x˙反馈能镇定的充要条件是其不能观子系统渐进稳定的

四、状态观测器

观测器的方程:
x ^ ˙ = ( A − G C ) x ^ + B u + G C x \dot{ \hat x}=(A-GC)\hat x+Bu+GCx x^˙=(AGC)x^+Bu+GCx
若系统完全能观,则状态观测器存在且设计可以完全按照极点配置算法进行
反馈矩阵G的设计
1、验证系统的能观性
2、写出观测器的特征方程 ∣ λ I − ( A − G C ) ∣ |\lambda I-(A-GC)| λI(AGC)
3、希望观测器的特征方程
4、求出G

五、利用状态观测器实现状态反馈

1.闭环极点设计的分离性

若系统能控能观,用 x ^ \hat x x^形成状态反馈后,K和G的设计可以分别独立进行

2.传递函数矩阵不变性

直接状态反馈、状态观测器状态反馈具有相同的传递函数

  • 2
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

叫我阿亮就好了-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值