工程数学
文章平均质量分 85
叫我阿亮就好了-
这个作者很懒,什么都没留下…
展开
-
工程数学(5)——大型方程组的迭代方法
文章目录一、Jacobi迭代和Gauss-Seidel迭代二、迭代法基本定理对于大型方程组Ax=bAx=bAx=b,若AAA是非奇异矩阵,则方程组有唯一解,将方程组变形为等价的形式x=Bx+fx=Bx+fx=Bx+f并由此建立迭代公式x(k+1)=Bxk+fx^{(k+1)}=Bx^{k}+fx(k+1)=Bxk+fBBB称为迭代矩阵一、Jacobi迭代和Gauss-Seidel迭代Jacobi迭代公式为:x(k+1)=Bxk+fx^{(k+1)}=Bx^{k}+fx(k+1)=Bxk+f如果原创 2021-10-12 16:25:18 · 434 阅读 · 0 评论 -
工程数学(4)——向量范数,矩阵范数和方程组条件数
文章目录一、向量范数二、矩阵范数三、方程组的条件数一、向量范数如果向量x的某个实值函数f(x)=∣∣x∣∣f(x)=||x||f(x)=∣∣x∣∣满足如下性质:正定性:∣∣x∣∣≥0||x|| \geq 0∣∣x∣∣≥0,当且仅当x=0时,||x||=0齐次性:对任意实数α\alphaα,都有∣∣αx∣∣=∣∣α∣∣∣∣x∣∣||\alpha x||=||\alpha|||| x||∣∣αx∣∣=∣∣α∣∣∣∣x∣∣三角不等式:∣∣x+y∣∣≤∣∣x∣∣+∣∣y∣∣||x+y||\leq||x|原创 2021-10-02 21:37:46 · 1021 阅读 · 0 评论 -
工程数学(3)——矩阵的直接三角分解法
文章目录一、三对角方程组追赶法二、对称正定的Cholesky分解法一、三对角方程组追赶法Ax=fAx=fAx=f的系数矩阵呈对三角形A=(b1c1a2b2c2⋱⋱⋱an−1bn−1cn−1anbn)A= \begin{pmatrix} b_{1} & c_{1} \\ a_{2} & b_{2} & c_2\\ & \ddots & \ddots & \ddots\\ &&原创 2021-10-02 20:19:27 · 1519 阅读 · 0 评论 -
工程数学(2)——高斯消去法
文章目录一、概述二、原理三、高斯列主元消去法一、概述高斯消去法是一种求解线性方程组的算法。其本质是将线性方程组的增广矩阵转化为行阶梯矩阵二、原理已知线性方程组Ax=bAx=bAx=b写出增广矩阵(A∣b)(A|b)(A∣b)将其转化为上三角矩阵(A1∣b1)(A^1|b^1)(A1∣b1)(A1∣b1)=(a11a12⋯a1nb1a22⋯a2nb2⋱⋮⋮annbn)(A^1|b^1)= \begin{pmatrix} a_{11} & a_{12} & \原创 2021-09-26 10:51:19 · 3977 阅读 · 3 评论 -
工程数学(1)——误差、有效数字以及近似值的运算问题
文章目录前言一、误差和有效数字1.误差2.有效数字二、近似值的加减乘除运算1.近似值的加减2.近似值的乘除3.混合运算三、算术运算的误差界和相对误差界前言一、误差和有效数字1.误差设实数xxx为某个精确值,aaa是他的一个近似值绝对误差Δa=∣x−a∣\Delta a=|x-a|Δa=∣x−a∣,简称误差当x≠0x \neq0x=0时,Δra=Δa∣x∣\Delta_ra=\frac{\Delta a}{|x|}Δra=∣x∣Δa为相对误差若Δa=∣x−a∣≤δa\Delta a=原创 2021-09-18 22:17:24 · 4965 阅读 · 2 评论