现代控制理论(3)——线性控制系统的能控性和能观性


一、能控性

通过改变输入量u,能使状态变量由任意初态转移到终态,则称系统状态完全能控
约旦标准型判据
对于状态方程 x ˙ = A x + B u \dot x=Ax+Bu x˙=Ax+Bu
判据1:A为对角型且特征值互异,状态能控的充要条件是B阵每行元素不全为零
判据2:A为约旦型,状态能控的充要条件是B阵相应于约旦块的最后一行元素不全为0
秩判据
状态能控的充要条件是其能控矩阵 M = [ B , A B , A 2 B , ⋯   , A n − 1 B ] M=[B,AB,A^2B,\cdots,A^{n-1}B] M=[B,AB,A2B,,An1B]满秩
n是系统的维数

二、能观性

通过观测系统输出,能唯一确定系统的全部初始状态,则称系统是完全能观的
约旦标准型判据
对于输出方程 y = C x y=Cx y=Cx
判据1:A为对角型且特征值互异,状态能观的充要条件是C阵每列元素不全为零
判据2:A为约旦型,状态能观的充要条件是c阵相应于约旦块的第一列元素不全为0
秩判据
状态能观的充要条件是其能观矩阵 N = [ C , C A , ⋯   , C A n − 1 ] T N=[C,CA,\cdots,CA^{n-1}]^T N=[C,CA,CAn1]T满秩

三、能控与能观的对偶关系

1.对偶系统

设有两个n维系统 ( A 1 , B 1 , C 1 ) , ( A 2 , B 2 , C 2 ) (A_1,B_1,C_1),(A_2,B_2,C_2) (A1,B1,C1),(A2,B2,C2)
若满足 A 2 = A 1 T , B 2 = C 1 T , C 2 = B 1 T A_2=A_1^T,B_2=C_1^T,C_2=B1^T A2=A1T,B2=C1T,C2=B1T,则称两系统是对偶系统
具有以下性质:
传递函数矩阵互为转置
特征方程相同

2.对偶原理

系统1的能控性等价于系统2的能观性
系统1的能观性等价于系统2的能控性

四、能控标准型与能观标准型

1.单输入系统能控标准1型

对于系统 x ˙ = A x + B u , y = C x \dot x=Ax+Bu,y=Cx x˙=Ax+Bu,y=Cx
存在线性非奇异变换 x = T c 1 x ‾ x=T_{c1}\overline x x=Tc1x
原系统变为能控标准1型
x ‾ ˙ = A ‾ x ‾ + B ‾ u , y = C ‾ x ‾ \dot {\overline x}=\overline A\overline x+\overline Bu,y=\overline C\overline x x˙=Ax+Bu,y=Cx
在这里插入图片描述
在这里插入图片描述
a 0 , a 1 , ⋯   , a n − 1 a_0,a_1,\cdots,a_{n-1} a0,a1,,an1是系统特征多项式的各项系数
同时也可以由 W ( s ) = C ( s I − A ) − 1 B = β n − 1 s n − 1 + ⋯ + β 1 s + β 0 s n + a n − 1 s n − 1 + ⋯ + a 1 s + a 0 W(s)=C(sI-A)^{-1}B=\frac{\beta_{n-1}s^{n-1}+\cdots+\beta_1s+\beta_0}{s^n+a_{n-1}s^{n-1}+\cdots+a_1s+a_0} W(s)=C(sIA)1B=sn+an1sn1++a1s+a0βn1sn1++β1s+β0直接写出 A ‾ , B ‾ , C ‾ \overline A,\overline B,\overline C A,B,C

2.单输入系统能控标准2型

对于系统 x ˙ = A x + B u , y = C x \dot x=Ax+Bu,y=Cx x˙=Ax+Bu,y=Cx
存在线性非奇异变换 x = T c 2 x ‾ x=T_{c2}\overline x x=Tc2x
原系统变为能控标准2型
在这里插入图片描述
式中 a 0 、 a 1 , ⋯   , a n − 1 a_0、a_1,\cdots,a_{n-1} a0a1,,an1是系统特征多项式:
∣ λ I − A ∣ = λ n + a n − 1 λ n − 1 + ⋯ + a 1 λ + a 0 |\lambda I-A|=\lambda ^n+a_{n-1}\lambda^{n-1}+\cdots+a_1\lambda+a_0 λIA=λn+an1λn1++a1λ+a0的各项系数
式中 c ‾ = [ c b , c A b , ⋯   , c A n − 1 b ] \overline c=[cb,cAb,\cdots,cA^{n-1}b] c=[cb,cAb,,cAn1b]

3.单输入系统能观标准1型与能观标准2型

能观标准1型与能控标准2型互为对偶
能观标准2型与能控标准1型互为对偶

五、线性系统的结构分解

1.按能控性分解

非奇异变换 x = R c x ^ x=R_c\hat x x=Rcx^
在这里插入图片描述
在这里插入图片描述

2.按能观性分解

非奇异变换 x = R o x ^ x=R_o\hat x x=Rox^
在这里插入图片描述
在这里插入图片描述

3.按能控性和能观性进行分解

分解后,传递函数阵不变,与能控能观子系统的传递函数阵相同
具体分解步骤可以先按能控性分解,然后再分别对能控子系统和不能控子系统进行能观性分解

六、传递函数矩阵的实现

对于给定的传递函数阵 W ( s ) W(s) W(s),存在状态空间表达式满足:
C ( s I − A ) − 1 B + D = W ( s ) C(sI-A)^{-1}B+D=W(s) C(sIA)1B+D=W(s)
则称该状态空间表达式为传递函数一个实现
最小实现
系统是最小实现的充要条件是系统能控且能观
寻求最小实现的步骤
1.先求W(s)的能控标准型实现
(若r<m采用能控实现,若r>m,采用能观实现)
r,m分别为输入和输出的维数
2.结构分解找出能控且能观的子系统即为最小实现

七、能控性、能观性与传递函数阵的关系

系统能控且能观的充要条件是 W ( s ) W(s) W(s)中没有零点、极点对消
W(s)表示的是该系统既能控又能观的那一部分子系统

  • 24
    点赞
  • 122
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

叫我阿亮就好了-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值