顺手把这两篇比较相像的GAN网络整理一下。
心有猛虎,细嗅蔷薇。
2018CVPR:Attentive GAN
本篇文章是2018年一篇CVPR,主要是针对雨滴Raindrop的去除提出了一种方法,在GAN网络中引入注意力机制,将生成的注意力图和原始有雨图像一起输入,完成去雨。是北大Jiaying Liu老师课题组的一篇文章,同组比较知名的去雨方面研究还有杨文瀚。
作者指出,对于雨滴去除问题,首先是被雨滴遮挡的区域没有给出,其次大部分被遮挡区域的背景信息完全丢失,因此存在一定的挑战性。本文则是使用了一种基于对抗训练的注意力生成网络,在生成网络和判别网络中引入视觉注意力信息。并且在训练中视觉注意力学习雨滴区域和其周围信息,引入视觉注意力机制后,生成网络就会更加关注雨滴区域和周围结构,判别网络则能评估恢复区域的局部一致性。
关键词: 雨滴 + GAN + 视觉注意力
前人的工作及缺陷:
雨滴检测和去除问题已提出了一些解决方法。
有一些方法致力于探测雨滴,但没有移除它们。
其他方法利用立体视觉、视频流或特殊设计的光学快门来检测和去除雨滴,因此不适用于普通单帧图像。
Eigen等人提出了一种方法(一个三层的CNN网络),试图通过深度学习的方法,基于单幅图像去除雨滴或污垢。然而,它只能去除图像中的小雨滴,而且输出图像比较模糊,并且该方法无法处理相对较大和稠密的雨滴。
主要创新之处:
1、提出了一种注意力循环网络。在传统的生成网络前尝试生成注意力分布图,使得生成网络聚焦在有雨滴的区域。具体实现由一个结合深度残差网络(ResNets)和记忆神经网络(LSTM)的循环神经网络和一部分标准的卷积层实现。(5ResNet + LSTM + conv)<