深度学习框架PyTorch:入门与实践 学习(四)

PyTorch中常用工具

torchvision

  1. models:提供深度学习中各种经典的网络结构以及预训练好的模型,包括AlexNet, VGG, ResNet, Inception
  2. datsets:提供常用的数据集加载,设计上均继承torch.utils.data.dataset,主要包括MNIST,CIFAR10/100,ImageNet,COCO
  3. transforms:提供常用的数据预处理操作,主要包括对tensor和PILImage对象的操作
  4. torchvision.utils.save_image:直接将tensor保存成图片
    from torch.utils import data
    import os
    from PIL import Image
    from torchvision import transforms
    from torchvision import utils
    import numpy
    import torch
    
    class Data(data.Dataset):
        def __init__(self, root):
            # 返回指定路径下的文件和文件夹列表。
            imgs_HR = os.listdir(os.path.join(root, 'gt'))
            self.imgs_HR = [os.path.join(root, 'gt', img) for img in imgs_HR]
            imgs_LR = os.listdir(os.path.join(root, 'lr'))
            self.imgs_LR = [os.path.join(root, 'lr', img) for img in imgs_LR]
            self.transform = transforms.ToTensor()
    
        def _
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值