麻省理工线性代数第一讲

麻省理工线性代数第一讲探讨了方程组的几何意义,包括直线的交点和三维空间中平面的交点。讲解了矩阵向量表示,将方程组转换为AX=b的形式,并解释了如何寻找满足条件的解。最后,讨论了解的存在性问题,与几何中的相交情况和向量线性组合的对应关系。
摘要由CSDN通过智能技术生成

麻省理工线性代数第一讲

本文主要发表个人学习麻省理工线性代数公开课的学习心得。


课程第一讲,讲师花费了接近40分钟的时间,我觉得其实主要就是想说明三点:

  1. 方程组的几何意义
  2. 方程组的矩阵向量表示形式
  3. 方程组解存在问题

几何意义

2x - y = 0
-x + 2y = 3
考虑上述方程组,在几何上方程组的解即为直线2x-y=0和直线-x+2y=3的交点。
2x - y = 0
-x + 2y - z = -1
0x - 3y + 4z= 4
而如果是上述方程组,则可以理解为三个平面在三维空间上的交点。

矩阵向量表示

方程组的系数可以看成一个矩阵A,成为系数矩阵,未知数可以看成列向量X,方程组右侧常数值看成一个列向量b,则AX=b。如下:
2x - y = 0
-x + 2y = 3
则:
这里写图片描述
如果将其写成这样则可以理解为求解一组列向量,使其满足AX=b.
如果写成下图这样,
这里写图片描述
将系数矩阵按列拆分,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值