caffe 中classification.cpp的源码详解、改写

7 篇文章 0 订阅

caffe中给出了分类的实例源代码,在初学时会调用生成的classification.exe对mnist手写字符图像进行分类。首先,用注释的方式对源码进行详细的说明。另外,这个例子用了类的概念且内容比较繁杂,需要改写成在实际测试中使用的方式。

 

1、classification.cpp的源码详解

首先介绍一下源代码中的Classifier类。

Classifier函数:根据模型的配置文件.prototxt,训练好的模型文件.caffemodel,建立模型,得到net_;处理均值文件,得到mean_;读入labels文件,得到labels_。classify函数:调用Predict函数对图像img进行分类,返回std::pair< std::string, float >形式的预测结果。私有函数:仅供classifier函数和classify函数使用,包括

setmean函数:将均值文件读入,转化为一张均值图像mean_。

Predict函数:调用Process函数将图像输入到网络中,使用net_->Forward()函数进行预测;将输出层的输出保存到vector容器中返回。

Process函数:这里写代码片对图像的通道数、大小、数据形式进行改变,减去均值mean_,再写入到net_的输入层中。

私有变量:

net_:模型变量;

input_geometry_:输入层的图像的大小;

num_channels_:输入层的通道数;

mean_:均值文件处理得到的均值图像;

labels_:标签文件,输出的结果表示的含义

其他全局函数在源码中说明。源代码如下:

 

#include <caffe/caffe.hpp>
#ifdef USE_OPENCV
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#endif  // USE_OPENCV
#include <algorithm>
#include <iosfwd>
#include <memory>
#include <string>
#include <utility>
#include <vector>

#ifdef USE_OPENCV
#ifdef USE_OPENCV
using namespace caffe;  // NOLINT(build/namespaces)
using std::string;

//为std::pair<string, float>创建一个名为“Prediction”的类型别名
typedef std::pair<string, float> Prediction;
class Classifier {
public:
	// Classifier构造函数的声明,输入形参分别为配置文件(train_val.prototxt)、训练好的模型文件(caffemodel)、均值文件和labels_标签文件
	Classifier(const string& model_file, const string& trained_file, const string& mean_file, const string& label_file);

	// Classify函数对输入的图像进行分类,返回std::pair<string, float>类型的预测结果
	// Classify函数的形参列表:img是输入一张图像,N是输出概率值从按降序排列的前N个值。
	std::vector<Prediction> Classify(const cv::Mat& img, int N = 5);

private:
	// SetMean函数将均值文件读入,转化为一张均值图像mean_,形参是均值文件的文件名
	void SetMean(const string& mean_file);

	// Predict函数调用Process函数将图像输入到网络中,使用net_->Forward()函数进行预测;
	// 将输出层的输出保存到vector容器中返回,输入形参是单张图片
	std::vector<float> Predict(const cv::Mat& img);

	void WrapInputLayer(std::vector<cv::Mat>* input_channels);

	// Preprocess函数对图像的通道数、大小、数据形式进行改变,减去均值mean_,再写入到net_的输入层中
	void Preprocess(const cv::Mat& img,	std::vector<cv::Mat>* input_channels);

	// Classifier类的私有变量
private:
	shared_ptr<Net<float> > net_;	// 网络为数据为float类型,那么Blob和一切有关的输入的外部数据都为float类型
	cv::Size input_geometry_;	// 输入层图像的大小
	int num_channels_;		// 输入层的通道数
	cv::Mat mean_;			// 均值文件处理得到的均值图像
	std::vector<string> labels_;	// 标签文件,labels_定义成元素是string类型的vector容器
};

//在Classifier类外定义Classifier类的构造函数
Classifier::Classifier(const string& model_file,
	const string& trained_file,
	const string& mean_file,
	const string& label_file) 
{
#ifdef CPU_ONLY
	Caffe::set_mode(Caffe::CPU); // CPU模式
#else
	Caffe::set_mode(Caffe::GPU); // GPU模式
#endif

	/* Load the network. */
	net_.reset(new Net<float>(model_file, TEST));	// 加载配置文件,设定模式为TEST测试
	net_->CopyTrainedLayersFrom(trained_file);	// 加载caffemodel,该函数在net.cpp中实现

	// 要求输入输出都是1(指的是Blob个数)
	CHECK_EQ(net_->num_inputs(), 1) << "Network should have exactly one input.";
	CHECK_EQ(net_->num_outputs(), 1) << "Network should have exactly one output.";

	Blob<float>* input_layer = net_->input_blobs()[0];	// 定义输入层变量
	num_channels_ = input_layer->channels();		// 得到输入层的通道数
	CHECK(num_channels_ == 3 || num_channels_ == 1)		// 检查图像通道数,3对应RGB图像,1对应灰度图像
		<< "Input layer should have 1 or 3 channels.";
	input_geometry_ = cv::Size(input_layer->width(), input_layer->height());//得到输入层图像大小

	// Classifier函数中调用SetMean函数,读取binaryproto均值文件,得到均值图像mean_
	SetMean(mean_file);

	std::ifstream labels(label_file.c_str());//从本地txt文本加载标签名称(行表示)

	CHECK(labels) << "Unable to open labels file " << label_file;
	string line;
	while (std::getline(labels, line))
		labels_.push_back(string(line));

	// 输出层只有一个Blob,因此用[0]; 另外,输出层的shape为(1, 10) 
	// mnist有10类,这里的output_layer->channels()就是 shape(1) = 10
	Blob<float>* output_layer = net_->output_blobs()[0];		
	CHECK_EQ(labels_.size(), output_layer->channels())		// 判断标签和输出size是否相同
		<< "Number of labels is different from the output layer dimension.";
}


// partial_sort 排序用到的自定义比较函数 => 前者比后者大就返回true
static bool PairCompare(const std::pair<float, int>& lhs,
	const std::pair<float, int>& rhs) {
	return lhs.first > rhs.first;
}

// 函数用于返回向量v的前N个最大值的索引,也就是返回概率最大的五个类别的标签  
// 如果你是二分类问题,那么这个N直接选择1  (N要小于等于类别数)
static std::vector<int> Argmax(const std::vector<float>& v, int N) 
{
	std::vector<std::pair<float, int> > pairs;

	for (size_t i = 0; i < v.size(); ++i)
		pairs.push_back(std::make_pair(v[i], static_cast<int>(i)));

	std::partial_sort(pairs.begin(), pairs.begin() + N, pairs.end(), PairCompare);

	std::vector<int> result;
	for (int i = 0; i < N; ++i)
		result.push_back(pairs[i].second);

	return result;
}

// Classifier类的Classify函数的定义,里面调用了Classifier类的私有函数Predict函数和上面实现的Argmax函数
// 预测函数,输入一张图片img,希望预测的前N种概率最大的,我们一般取N等于1  
// 输入预测结果为std::make_pair,每个对包含这个物体的名字,及其相对于的概率 
std::vector<Prediction> Classifier::Classify(const cv::Mat& img, int N) 
{
	// 调用Predict函数对输入图像进行预测,输出是概率值
	std::vector<float> output = Predict(img);	
	N = std::min<int>(labels_.size(), N);	
	// 调用上面的Argmax函数返回概率值最大的N个类别的标签,放在vector容器maxN里
	std::vector<int> maxN = Argmax(output, N);	
	// 定义一个std::pair<string, float>型的变量,用来存放类别的标签及类别对应的概率值
	std::vector<Prediction> predictions;	
	for (int i = 0; i < N; ++i) {
		int idx = maxN[i];
		predictions.push_back(std::make_pair(labels_[idx], output[idx]));
	}
	return predictions;
}


// 加载均值文件函数的定义
void Classifier::SetMean(const string& mean_file) {

	BlobProto blob_proto;	//构造一个BlobProto对象blob_proto
	ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto);	// 读取均值文件给构建好的blob_proto
															 
	// 把BlobProto 转换为 Blob<float>类型
	Blob<float> mean_blob;
	mean_blob.FromProto(blob_proto);// 把blob_proto拷贝给mean_blob

	// 验证均值图片的通道个数是否与网络的输入图片的通道个数相同  
	CHECK_EQ(mean_blob.channels(), num_channels_)
		<< "Number of channels of mean file doesn't match input layer.";

	// 把三通道的图片分开存储,三张图片BGR按顺序保存到channels中 (对于mnist,只有一个通道;这里给出的是通用的方法)
	std::vector<cv::Mat> channels;
	float* data = mean_blob.mutable_cpu_data();//令data指向mean_blob
	for (int i = 0; i < num_channels_; ++i) 
	{
		cv::Mat channel(mean_blob.height(), mean_blob.width(), CV_32FC1, data);
		channels.push_back(channel);
		data += mean_blob.height() * mean_blob.width();
	}

	// 重新合成一张图片
	cv::Mat mean;
	cv::merge(channels, mean);

	// 计算每个通道的均值,得到一个三维的向量channel_mean,然后把三维的向量扩展成一张新的均值图片  
	// 这种图片的每个通道的像素值是相等的,这张均值图片的大小将和网络的输入要求一样 
	// 注意: 这里的去均值,是指对需要处理的图像减去均值图像的平均亮度 
	cv::Scalar channel_mean = cv::mean(mean);
	mean_ = cv::Mat(input_geometry_, mean.type(), channel_mean);
}

//Classifier类中Predict函数的定义,输入形参为单张图像
std::vector<float> Classifier::Predict(const cv::Mat& img) {
	
	Blob<float>* input_layer = net_->input_blobs()[0];

	// 这一步可以不需要,因为加载的网络中已经包含中这个结构(只是为了避免出错)
	input_layer->Reshape(1, num_channels_,input_geometry_.height, input_geometry_.width);

	// 输入带预测的图片数据,然后进行预处理,包括归一化、缩放等操作  
	net_->Reshape();

	std::vector<cv::Mat> input_channels; // 输入图像,按通道保存在vector中

	// 将cv::Mat类型图像数据的size、channel等和网路输入层的Blobg关联起来。
	WrapInputLayer(&input_channels);
	
	// 调用Classifier类中的Preprocess函数对图像的通道数、大小、数据形式进行改变,减去均值mean_,再写入到net_的输入层中
	Preprocess(img, &input_channels); 
	 
	// 前向传导
	net_->Forward();

#if 1
	// 把最后一层输出值,保存到vector中,结果就是返回每个类的概率  
	Blob<float>* output_layer = net_->output_blobs()[0];   // softmax 输出
	const float* begin = output_layer->cpu_data();
	const float* end = begin + output_layer->channels();
	return std::vector<float>(begin, end);
#else
	// 取全连接层的输出,自己实现softmax  g(i)= exp(i)/sum(exp(·))
	// ip2的bolb,shape为 (1,10),即只有前2维,  number=1,channnel=10
	//   用ip2->shape(2)和ip2->shape(3)获取height和width会报错(shape是vector,越界)
	//   用ip2->height()和ip2->width(),虽然越界,但是会返回1。

	boost::shared_ptr<Blob<float>> ip2 = net_->blob_by_name("ip2"); // InnerProduct 输出
	const float* begin = ip2->cpu_data();
	const float* end = begin + /*ip2->channels()*/ip2->shape(1);  // 只有2维  shape 1*10
	std::vector<float> ip2_Out = std::vector<float>(begin, end);//  channels() 即 shape(1), 是 N*C*W*H 的C, 这里尽管没有W和H,

	float sum = 0;
	for (auto ex1 : ip2_Out)
		sum += std::exp(ex1);

	std::for_each(ip2_Out.begin(), ip2_Out.end(), [&](float i)	{
		std::cout << "exp(" << i << ") = "; i = std::exp(i) / sum; std::cout << i << std::endl;
	});
	return ip2_Out;
#endif
}


// 这个其实是为了获得net_网络的输入层数据的指针,然后后面我们直接把输入图片数据拷贝到这个指针里面
void Classifier::WrapInputLayer(std::vector<cv::Mat>* input_channels) 
{
	Blob<float>* input_layer = net_->input_blobs()[0];

	int width = input_layer->width();
	int height = input_layer->height();
	float* input_data = input_layer->mutable_cpu_data();
	for (int i = 0; i < input_layer->channels(); ++i) 
	{
		cv::Mat channel(height, width, CV_32FC1, input_data);
		input_channels->push_back(channel);
		input_data += width * height;
	}
}

// 图片预处理函数,包括图片缩放、归一化、3通道图片分开存储  
// 对于三通道输入CNN,经过该函数返回的是std::vector<cv::Mat>因为是三通道数据,所以用了vector  
void Classifier::Preprocess(const cv::Mat& img,	std::vector<cv::Mat>* input_channels)
{
	// 输入图片通道转换
	cv::Mat sample;
	if (img.channels() == 3 && num_channels_ == 1)		cv::cvtColor(img, sample, cv::COLOR_BGR2GRAY);
	else if (img.channels() == 4 && num_channels_ == 1)	cv::cvtColor(img, sample, cv::COLOR_BGRA2GRAY);
	else if (img.channels() == 4 && num_channels_ == 3)	cv::cvtColor(img, sample, cv::COLOR_BGRA2BGR);
	else if (img.channels() == 1 && num_channels_ == 3)	cv::cvtColor(img, sample, cv::COLOR_GRAY2BGR);
	else
		sample = img;

	// 输入图片缩放处理
	cv::Mat sample_resized;
	if (sample.size() != input_geometry_)
		cv::resize(sample, sample_resized, input_geometry_);
	else
		sample_resized = sample;

	cv::Mat sample_float;        // 定义sample_float为未减均值时的图像
	if (num_channels_ == 3)	sample_resized.convertTo(sample_float, CV_32FC3);
	else			sample_resized.convertTo(sample_float, CV_32FC1);

	cv::Mat sample_normalized;   //定义sample_normalized为减去均值后的图像

	// 调用opencv里的cv::subtract函数,将sample_float减去均值图像mean_得到减去均值后的图像
	cv::subtract(sample_float, mean_, sample_normalized);  // 可用 sample_normalized = sample_float - mean_

	// 为了通用,按通道存放在vector中
	cv::split(sample_normalized, *input_channels);

	CHECK(reinterpret_cast<float*>(input_channels->at(0).data) == net_->input_blobs()[0]->cpu_data())
		<< "Input channels are not wrapping the input layer of the network.";
}


int main(int argc, char** argv) 
{	
	// 使用时检查输入的参数向量是否为要求的6个,如果不是,打印使用说明
	// 这里可以根据个人需要更改,是否需要均值文件等...
	if (argc != 6) {
		std::cerr << "Usage: " << argv[0]
			<< " deploy.prototxt network.caffemodel"
			<< " mean.binaryproto labels.txt img.jpg" << std::endl;
		return 1;
	}

	::google::InitGoogleLogging(argv[0]);  // 可以不需要日志

	string model_file = argv[1];
	string trained_file = argv[2];
	string mean_file = argv[3];
	string label_file = argv[4];

	// 创建对象并初始化网络、模型、均值、标签各类对象
	Classifier classifier(model_file, trained_file, mean_file, label_file);

	string file = argv[5];//输入的待测图片

	// 打印信息
	std::cout << "---------- Prediction for " << file << " ----------" << std::endl;

	cv::Mat img = cv::imread(file, -1);
	CHECK(!img.empty()) << "Unable to decode image " << file;

	// 具体测试传入的图片并返回测试的结果:类别ID与概率值的Prediction类型数组
	std::vector<Prediction> predictions = classifier.Classify(img);
															   
	// 将测试结果打印 std::pair<string, float>类型的p变量,p.second代表概率值,p.first代表类别标签
	for (size_t i = 0; i < predictions.size(); ++i) {
		Prediction p = predictions[i];
		std::cout << std::fixed << std::setprecision(4) << p.second << " - \""
			<< p.first << "\"" << std::endl;
	}
}
#else
int main(int argc, char** argv) {
	LOG(FATAL) << "This example requires OpenCV; compile with USE_OPENCV.";
}
#endif  // USE_OPENCV

 

 

 

 

 

2、classification.cpp改写

上面的源码比较复杂,我们希望在自己的项目中进行测试,最好是能写成一个代码块里面,并且减去不需要的代码等。下面给出改写的代码。

 

#include "caffe/caffe.hpp"
#include <string>
#include <opencv2/opencv.hpp>

using namespace std;
using namespace cv;
using namespace caffe;

//用于表存输出结果的,string保存的预测结果对应的字符
typedef pair<string, float> Prediction;

// 函数Argmax()需要用到的子函数
static bool PairCompare(const std::pair<float, int>& lhs,
	const std::pair<float, int>& rhs) {
	return lhs.first > rhs.first;
}

// 返回预测结果中概率从大到小的前N个预测结果的索引
static std::vector<int> Argmax(const std::vector<float>& v, int N) {
	std::vector<std::pair<float, int> > pairs;
	for (size_t i = 0; i < v.size(); ++i)
		pairs.push_back(std::make_pair(v[i], i));
	std::partial_sort(pairs.begin(), pairs.begin() + N, pairs.end(), PairCompare);

	std::vector<int> result;
	for (int i = 0; i < N; ++i)
		result.push_back(pairs[i].second);
	return result;
}

int main(int argc, char** argv)
{
	 定义模型配置文件,模型文件,均值文件,标签文件以及待分类的图像
	string model_file =   R"(E:\ProgramData\caffe-windows\data\mnist\windows\lenet.prototxt)";
	string trained_file = R"(E:\ProgramData\caffe-windows\data\mnist\windows\snapshot_lenet_mean\_iter_10000.caffemodel)";
	string mean_file =    R"(E:\ProgramData\caffe-windows\data\mnist\windows\mean.binaryproto)";
	string label_file =   R"(E:\ProgramData\caffe-windows\data\mnist\windows\synset_words.txt)";
	string img_file =     R"(E:\ProgramData\caffe-windows\data\mnist\windows\3.bmp)";
	
	Mat img = imread(img_file);

	 定义变量
	shared_ptr<Net<float> > net_;
	Size input_geometry_;
	int num_channels_; 
	Mat mean_; 
	vector<string> labels_; 

	Caffe::set_mode(Caffe::GPU); // 使用GPU

	net_.reset(new Net<float>(model_file, TEST));	// 加载配置文件,设定模式为分类
	net_->CopyTrainedLayersFrom(trained_file);		// 根据训练好的模型修改模型参数

	 输入层信息
	Blob<float>* input_layer = net_->input_blobs()[0]; 
	num_channels_ = input_layer->channels(); 
	LOG(INFO) << "num_channels_:" << num_channels_;
	input_geometry_ = Size(input_layer->width(), input_layer->height()); 

	 处理均值文件,得到均值图像
	BlobProto blob_proto;
	ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto); 
	Blob<float> mean_blob;
	mean_blob.FromProto(blob_proto);
	vector<Mat> channels;
	float* data = mean_blob.mutable_cpu_data();
	for (int i = 0; i < num_channels_; i++)
	{
		Mat channel(mean_blob.height(), mean_blob.width(), CV_32FC1, data);
		channels.push_back(channel);
		data += mean_blob.height() * mean_blob.width();
	}

	Mat mean;
	merge(channels, mean); 
	Scalar channel_mean = cv::mean(mean);
	mean_ = Mat(input_geometry_, mean.type(), channel_mean);

	 获取标签
	ifstream labels(label_file.c_str());
	string line;
	while (getline(labels, line))
		labels_.push_back(string(line));
	//判断标签的类数和模型输出的类数是否相同
	Blob<float>* output_layer = net_->output_blobs()[0];
	LOG(INFO) << "output_layer dimension: " << output_layer->channels()
		<< "; labels number: " << labels_.size();

	// 预测图像信息
	input_layer->Reshape(1, num_channels_, input_geometry_.height, input_geometry_.width);
	net_->Reshape();

	//将input_channels指向模型的输入层相关位置
	vector<Mat> input_channels;
	int width = input_layer->width();
	int height = input_layer->height();
	float* input_data = input_layer->mutable_cpu_data();
	for (int i = 0; i < input_layer->channels(); i++)
	{
		Mat channel(height, width, CV_32FC1, input_data);
		input_channels.push_back(channel);
		input_data += width * height;
	}

	 改变图像的大小、通道、数据类型,去均值等
	Mat sample;
	if (img.channels() == 3 && num_channels_ == 1)		cv::cvtColor(img, sample, cv::COLOR_BGR2GRAY);
	else if (img.channels() == 4 && num_channels_ == 1)	cv::cvtColor(img, sample, cv::COLOR_BGRA2GRAY);
	else if (img.channels() == 4 && num_channels_ == 3)	cv::cvtColor(img, sample, cv::COLOR_BGRA2BGR);
	else if (img.channels() == 1 && num_channels_ == 3)	cv::cvtColor(img, sample, cv::COLOR_GRAY2BGR);
	else
		sample = img;

	cv::Mat sample_resized;
	if (sample.size() != input_geometry_)	cv::resize(sample, sample_resized, input_geometry_);
	else									sample_resized = sample;

	cv::Mat sample_float;
	if (num_channels_ == 3) sample_resized.convertTo(sample_float, CV_32FC3);
	else                    sample_resized.convertTo(sample_float, CV_32FC1);

	cv::Mat sample_normalized;
	cv::subtract(sample_float, mean_, sample_normalized);

	 处理好的数据保存在输入层(指针指向实现)
	cv::split(sample_normalized, input_channels);

	 调用模型进行预测
	net_->Forward();

	//将输出层数据保存在vector容器中
	const float* begin = output_layer->cpu_data();
	const float* end = begin + output_layer->channels();
	vector<float> output = vector<float>(begin, end);
		
	 显示概率前N大的结果
	int N = 10;
	N = std::min<int>(labels_.size(), N);
	std::vector<int> maxN = Argmax(output, N)
		;
	std::vector<Prediction> predictions;
	for (int i = 0; i < N; ++i) {
		int idx = maxN[i];
		predictions.push_back(std::make_pair(labels_[idx], output[idx]));
	}

	for (size_t i = 0; i < predictions.size(); ++i) {
		Prediction p = predictions[i];
		std::cout << std::fixed << std::setprecision(4) << p.second << " - \""
			<< p.first << "\"" << std::endl;
	}

	return 0;
}
  • 1
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 12
    评论
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

aworkholic

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值