UART(一)——起始位,停止位,奇偶校验位,数据位等概念

本文深入解析通用异步收发传输器(UART)的概念、接线方式、协议细节及工作原理。介绍UART如何在串行与并行通信间转换数据,包括起始位、数据位、停止位等功能,并解释波特率对数据传输速度的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 概念

通用异步收发传输器(Universal Asynchronous Receiver/Transmitter),通常称作UART。

它将要传输的资料在串行通信并行通信之间加以转换。作为把并行输入信号转成串行输出信号的芯片,UART通常被集成于其他通讯接口的连结上。

具体实物表现为独立的模块化芯片,或作为集成于微处理器中的周边设备。一般是RS-232C规格的,与类似Maxim的MAX232之类的标准信号幅度变换芯片进行搭配,作为连接外部设备的接口。在UART上追加同步方式的序列信号变换电路的产品,被称为USART(Universal Synchronous Asynchronous Receiver Transmitter)。


2. 接线

一般情况硬件连接比较简单,仅需要3条线,注意连接时两个设备UART电平,如电平范围不一致请做电平转换后再连接,如下图所示:

  • TX:发送数据端,要接对面设备的RX
  • RX:接收数据端,要接对面设备的TX
  • GND:保证两设备共地,有统一的参考平面

1)正常 USART 模式下,通过这些引脚以帧的形式发送和接收串行数据:

  • 发送或接收前保持空闲线路
  • 起始位
  • 数据(字长 8 位或 9 位),最低有效位在前
  • 用于指示帧传输已完成的 0.5 个、1 个、1.5 个、2 个停止位
  • 该接口使用小数波特率发生器 - 带 12 位尾数和 4 位小数
  • 状态寄存器 (USART_SR)
  • 数据寄存器 (USART_DR)
  • 波特率寄存器 (USART_BRR) - 12 位尾数和 4 位小数。
  • 智能卡模式下的保护时间寄存器 (USART_GTPR)。

2)在同步模式下连接时需要以下引脚:

  • SCLK:发送器时钟输出。该引脚用于输出发送器数据时钟,以便按照 SPI 主模式进行同步发送(起始位和结束位上无时钟脉冲,可通过软件向最后一个数据位发送时钟脉冲)。RX 上可同步接收并行数据。这一点可用于控制带移位寄存器的外设(如 LCD 驱动器)。时钟相位和极性可通过软件编程。在智能卡模式下,SCLK 可向智能卡提供时钟。在硬件流控制模式下需要以下引脚:
  • nCTS:“清除以发送”用于在当前传输结束时阻止数据发送(高电平时)。
  • nRTS:“请求以发送”用于指示 USART 已准备好接收数据(低电平时)

3. 协议

UART作为异步串口通信协议的一种,工作原理是将传输数据的每个字符一位接一位地传输。

 

其中各位的意义如下:

  • 起始位:先发出一个逻辑”0”的信号,表示传输字符的开始。
  • 资料位:紧接着起始位之后。资料位的个数可以是4、5、6、7、8等,构成一个字符。通常采用ASCII码。从最低位开始传送,靠时钟定位。
  • 奇偶校验位:资料位加上这一位后,使得“1”的位数应为偶数(偶校验)或奇数(奇校验),以此来校验资料传送的正确性。
  • 停止位:它是一个字符数据的结束标志。可以是1位、1.5位、2位的高电平。 由于数据是在传输线上定时的,并且每一个设备有其自己的时钟,很可能在通信中两台设备间出现了小小的不同步。因此停止位不仅仅是表示传输的结束,并且提供计算机校正时钟同步的机会。适用于停止位的位数越多,不同时钟同步的容忍程度越大,但是数据传输率同时也越慢。
  • 空闲位:处于逻辑“1”状态,表示当前线路上没有资料传送。
  • 波特率:是衡量资料传送速率的指标。表示每秒钟传送的符号数(symbol)。一个符号代表的信息量(比特数)与符号的阶数有关。例如传输使用256阶符号,每8bit代表一个符号,资料传送速率为120字符/秒,则波特率就是120baud,比特率是120*8=960bit/s。这两者的概念很容易搞错。

4. 例如

9600 8N1(9600波特率,8个数据位,没有校验位,1位停止位)为例,这是目前最常用的串口配置,现在我们传输’O’'K’两个ASCII值,'O’的ASCII为79,对应的二进制数据为01001111 ,'K’对应的二进制数据为01001011 ,传输的格式数据如下图所示:

串口波特率为9600,1bit传输时间大约为104us,传送一个数据实际是10个比特(开始位,8个数据位,停止位),一个bytes传输速率实际为9600*8/10=7680bps。

 

### 回答1: 用 sklearn 库中的 KMeans 算法进行聚类分析后,可以使用 Matplotlib 库进行可视化。可以使用 scatter 方法绘制数据点,并使用不同颜色表示不同类别。代码示例如下: ``` from sklearn.cluster import KMeans from matplotlib import pyplot as plt # 进行 KMeans 聚类 kmeans = KMeans(n_clusters=3) kmeans.fit(X) # 绘制聚类结果 plt.scatter(X[:, 0], X[:, 1], c=kmeans.labels_) plt.show() ``` 其中 X 是待聚类数据,n_clusters 是聚类数量。 ### 回答2: k-means是种常见的聚类算法,在机器学习中应用广泛。sklearn库中提供了k-means算法的实现,同时也支持对聚类结果进行可视化展示,方便用户观察聚类结果并进步分析。 在sklearn中,通过导入sklearn.cluster中的KMeans类来使用k-means算法。在使用KMeans类前,需要指定算法参数,如簇类数量、初始质心置等。具体参数配置可参照官方文档进行设置。 针对聚类结果的可视化展示,sklearn提供了多种方法。以下介绍两种常见的可视化方法: 1. 绘制散点图 将聚类结果用散点图进行可视化是种常见方法。在绘制散点图时,通常根据聚类簇别,对不同数据点进行颜色编码,以便用户能够更清晰地区分不同类别的数据点。代码示例: ``` import matplotlib.pyplot as plt # 聚类簇别结果保存在labels中 # 聚类中心置保存在cluster_centers_中 # X为原始数据 for i in range(n_clusters): plt.scatter(X[labels == i, 0], X[labels == i, 1], s=30, label='Cluster %d' % (i+1)) plt.scatter(cluster_centers_[:, 0], cluster_centers_[:, 1], marker='*', s=200, label='Centroids') plt.legend() plt.show() ``` 2. 绘制决策边界 决策边界用于划分不同聚类簇别的区域,相邻区域的簇别不同。通过绘制决策边界,可以更清晰地展示不同聚类簇别的分布情况。代码示例: ``` from sklearn.metrics import pairwise_distances_argmin # 聚类簇别结果保存在labels中 # X为原始数据 def plot_kmeans(kmeans, X, n_clusters=3, rseed=0, ax=None): labels = kmeans.fit_predict(X) # 绘制决策边界 ax = ax or plt.gca() ax.axis('equal') ax.scatter(X[:, 0], X[:, 1], c=labels, s=40, cmap='viridis', zorder=2) # 绘制聚类中心 centers = kmeans.cluster_centers_ radii = [cdist(X[labels == i], [center]).max() for i, center in enumerate(centers)] for c, r in zip(centers, radii): ax.add_patch(plt.Circle(c, r, fc='#CCCCCC', lw=3, alpha=0.5, zorder=1)) kmeans = KMeans(n_clusters=3, random_state=0) plot_kmeans(kmeans, X) plt.show() ``` 无论是绘制散点图还是绘制决策边界,k-means聚类的可视化展示都能够为用户提供全局性的聚类结果,方便用户进步分析和探索数据。 ### 回答3: 机器学习中的K均值聚类算法是种无监督学习方法,可用于将数据点分成不同的类别。在scikit-learn(sklearn)包中,我们可以使用KMeans类来实现K均值聚类算法,同时通过可视化的方式更直观地了解到该算法的结果。 首先,我们需要生成些数据。在这里,可以通过使用make_blobs函数生成随机的数据点,并将其分成不同的类别。然后,我们可以使用KMeans类对这些数据点进行聚类分析。在KMeans类中,我们可以设置聚类的数量(也称为k值)和迭代次数(max_iter)。例如,我们可以设置k值为3,迭代次数为100,并使用fit_predict函数进行聚类,将每个数据点分配到其所属的簇中。 接下来,我们可以使用matplotlib库来可视化聚类结果。对于二维数据,我们可以使用散点图来显示每个数据点所属的簇。我们还可以使用不同的颜色来区分不同的簇,使得结果更加直观。在二维数据的情况下,可以使用plt.scatter函数来绘制散点图,使用不同的颜色为不同的簇分配不同的值。我们还可以使用KMeans类的cluster_centers_属性来显示每个簇的中心点,用不同的标记区分每个簇的中心点。 总之,通过使用sklearn kmeans聚类可视化,我们可以更好地了解K均值聚类算法的工作原理,并更好地理解每个数据点所属的不同簇。此外,该过程也可以帮助我们选择最佳的k值和max_iter值,以便获得更好的聚类结果。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值