信干噪比

名词定义

信干噪比SINR(Signal to Interference plus Noise Ratio),指的是系统中信号与干扰和噪声之和的比。

  1. 信号是指来自设备外部需要通过设备进行处理的电子信号。
  2. 干扰是指系统本身以及异系统带来的干扰,如同频干扰、多径干扰。
  3. 噪声是指经过设备后产生的原信号中并不存在的无规则的额外信号,这种信号与环境有关,不随原信号的变化而变化。

计算公式

信干噪比的表达方式为:

SINR = 10lg[ PS /( PI + PN ) ],其中:

  1. SINR:信干噪比,单位是dB。
  2. PS:信号的有效功率。
  3. PI:干扰信号的有效功率。
  4. PN:噪声的有效功率。

更多信息

信干噪比是度量通信系统通信质量可靠性的一个主要技术指标,信干噪比越大越好。
增大信干噪比是提高通信质量的一项主要任务。在无线局域网中,可通过以下两个方面提高信干噪比:

  1. 减小干扰:例如可以选择干扰较少的信道以减小其它信号的干扰。
  2. 增大设备能力:信道选定后,可以靠增大设备能力来提高信噪比,例如提高天线增益和降低接收机等效噪声温度。

相关概念

信噪比

具体内容请参见信噪比。

联系:信噪比和信干噪比都是度量通信系统通信质量可靠性的一个技术指标。

区别:信噪比是信号与噪声的比,而信干噪比增加了“干扰”的影响,是信号与干扰和噪声之和的比。

### LCMV 波束形成算法的输出比性能 最小方差无失真响应(Linearly Constrained Minimum Variance, LCMV)波束成形器是一种自适应天线阵列处理技术,旨在优化接收号的质量。LCMV 的目标是在满足某些约束条件的情况下最小化输出功率,从而提高输出比(Signal-to-Interference-plus-Noise Ratio, SINR)[^1]。 对于理想情况下的均匀线性阵列,在不存在模型误差和其他假设成立的前提下,LCMV 能够提供最优的 SINR 性能。然而实际应用中由于存在各种因素的影响,如导向矢量估计偏差、声特性变化以及扰源位置不确定性等,这些都会影响到最终得到的 SINR 值[^2]。 为了评估 LCMV 输出 SINR 的表现,通常会通过仿真来模拟不同场景下该算法的效果。下面给出一段 Python 代码用于计算并展示 LCMV 波束形成的输出 SINR: ```python import numpy as np def lcmv_output_sinr(Rxx, Rxi, d): """ 计算给定协方差矩阵和期望方向向量时LCMV波束成型后的SINR 参数: Rxx : 扰加声的相关矩阵 Rxi : 号与扰加声之间的互相关矩阵 d : 阵元间距对应的相位因子组成的向量 返回: sinr: 输出比 """ w_opt = np.linalg.inv(Rxx).dot(d) / (d.T.dot(np.linalg.inv(Rxx)).dot(d)) sinr = ((w_opt.conj().T.dot(Rxi)) ** 2) / \ (w_opt.conj().T.dot(Rxx - Rxi.dot(Rxi.H)).dot(w_opt)) return abs(sinr) # 定义参数 array_elements = 8 # 天线单元数量 theta_s = np.pi/4 # 来波角度(弧度制) spacing_lambda = 0.5 # 半波长间隔 SNR_dB = 10 # 输入比[dB] # 构建所需变量 angles = np.linspace(-np.pi, np.pi, num=360) steering_vector = np.exp(-1j * 2 * np.pi * spacing_lambda * np.arange(array_elements).reshape((-1, 1)) @ angles.reshape((1, -1))) desired_response_index = int(theta_s/(2*np.pi)*len(angles)+len(angles)/2)%len(angles) desired_steering_vec = steering_vector[:, desired_response_index].reshape(-1, 1) noise_covariance_matrix = np.eye(array_elements)*(10**(-(SNR_dB)/10)) interference_plus_noise_corr_mat = noise_covariance_matrix + ... # 这里省略了具体构建过程... output_SINR = lcmv_output_sinr(interference_plus_noise_corr_mat, interference_plus_noise_corr_mat@desired_steering_vec, desired_steering_vec) print(f"Output SINR of the LCMV Beamformer is {output_SINR:.2f} dB.") ``` 上述程序片段展示了如何基于输入数据计算 LCMV 波束成形器产生的输出 SINR。需要注意的是这只是一个简化版本的例子,并未考虑多径效应等因素对真实世界系统可能造成的影响[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值