直线恒过定点问题

前言

待定系数法的设法技巧:当直线经过点 ( 0 , 1 ) (0,1) (0,1)时,我们常常设其解析式为 y = k x + 1 y=kx+1 y=kx+1,当直线经过点 ( 1 , 0 ) (1,0) (1,0)时,我们常常设其解析式为 x = k y + 1 x=ky+1 x=ky+1

典例剖析

求证直线 ( 2 m + 1 ) x + ( m + 1 ) y = 7 m + 4 ( m ∈ R ) (2m+1)x+(m+1)y=7m+4(m\in R) (2m+1)x+(m+1)y=7m+4(mR)恒过某一个定点 P P P,并求其坐标。

法1:赋值法,令 m = 1 m=1 m=1,得到直线为 3 x + 2 y = 11 3x+2y=11 3x+2y=11;令 m = 2 m=2 m=2,得到直线为 5 x + 3 y = 18 5x+3y=18 5x+3y=18;联立求得交点为 P ( 3 , 1 ) P(3,1) P(31)

再将点 P ( 3 , 1 ) P(3,1) P(31)代入直线验证, ( 2 m + 1 ) x + ( m + 1 ) y = ( 2 m + 1 ) × 3 + ( m + 1 ) × 1 = 7 m + 4 (2m+1)x+(m+1)y=(2m+1)\times 3+(m+1)\times 1=7m+4 (2m+1)x+(m+1)y=(2m+1)×3+(m+1)×1=7m+4,故直线 ( 2 m + 1 ) x + ( m + 1 ) y = 7 m + 4 ( m ∈ R ) (2m+1)x+(m+1)y=7m+4(m\in R) (2m+1)x+(m+1)y=7m+4(mR)恒过某一个定点 P ( 3 , 1 ) P(3,1) P(31)

【补记】:当然还可以将这个解法更特殊化为,令 2 m + 1 = 0 2m+1=0 2m+1=0,得到 m = − 1 2 m=-\cfrac{1}{2} m=21,代入原直线得到 y = 1 y=1 y=1;令 m + 1 = 0 m+1=0 m+1=0,得到 m = − 1 m=-1 m=1,代入原直线得到 x = 3 x=3 x=3;联立求得交点为 P ( 3 , 1 ) P(3,1) P(31)

赋值法原理说明图:由于题目中不论 m m m取到何值时,都对应平面内的唯一的一条直线,故可以给参数 m m m赋值,

法2:换元法,由直线方程的点斜式形式 y = k ( x − x 0 ) + y 0 y=k(x-x_0)+y_0 y=k(xx0)+y0,可知直线必然经过点 P ( x 0 , y 0 ) P(x_0,y_0) P(x0y0),故思考将其通过换元法改写为点斜式;

①当 m + 1 ≠ 0 m+1\neq 0 m+1=0时,由原直线得到 y = − 2 m + 1 m + 1 x + 7 m + 4 m + 1 y=-\cfrac{2m+1}{m+1}x+\cfrac{7m+4}{m+1} y=m+12m+1x+m+17m+4

− 2 m + 1 m + 1 = k -\cfrac{2m+1}{m+1}=k m+12m+1=k,则得到 m = − k − 1 k + 2 m=\cfrac{-k-1}{k+2} m=k+2k1,代入得到 7 m + 4 m + 1 = − 3 k + 1 \cfrac{7m+4}{m+1}=-3k+1 m+17m+4=3k+1

故原直线可化为 y = k x − 3 k + 1 = k ( x − 3 ) + 1 y=kx-3k+1=k(x-3)+1 y=kx3k+1=k(x3)+1,故直线经过点 P ( 3 , 1 ) P(3,1) P(31)

②当 m + 1 = 0 m+1=0 m+1=0时,即 m = − 1 m=-1 m=1,代入得到直线为 x = 3 x=3 x=3,此时点 P P P也在直线上,

综上所述,直线必经过点 P ( 3 , 1 ) P(3,1) P(31)

法3:利用共点直线系方程求解;已知两条直线 l 1 : A 1 x + B 1 y + C 1 = 0 l_1:A_1x+B_1y+C_1=0 l1A1x+B1y+C1=0 l 2 : A 2 x + B 2 y + C 2 = 0 l_2:A_2x+B_2y+C_2=0 l2A2x+B2y+C2=0

则经过这两条直线 l 1 l_1 l1 l 2 l_2 l2 的交点的直线系方程为 ( A 1 x (A_1x (A1x + + + B 1 y B_1y B1y + + + C 1 ) C_1) C1) + + + λ ⋅ \lambda\cdot λ ( A 2 x (A_2x (A2x + + + B 2 y B_2y B2y + + + C 2 ) C_2) C2) = = = 0 0 0 ( 除 l 2 ) (除l_2) (l2),其中 λ \lambda λ是待定系数。

将直线方程中的 m m m看成参数,分离得到 ( 2 x + y − 7 ) m + ( x + y − 4 ) = 0 (2x+y-7)m+(x+y-4)=0 (2x+y7)m+(x+y4)=0

则由 { 2 x + y − 7 = 0 x + y − 4 = 0 \left\{\begin{array}{l}{2x+y-7=0}\\{x+y-4=0}\end{array}\right. {2x+y7=0x+y4=0,求得 { x = 3 y = 1 \left\{\begin{array}{l}{x=3}\\{y=1}\end{array}\right. {x=3y=1

即两条直线的交点为 P ( 3 , 1 ) P(3,1) P(31),也即原直线必过定点 P ( 3 , 1 ) P(3,1) P(31)

【衡水金卷,直线过定点类型,较难】如图所示,已知点 A ( − 1 , 0 ) A(-1,0) A(10)是抛物线的准线与 x x x轴的交点,过点 A A A的直线与抛物线交于点 M , N M,N MN两点,过点 M M M的直线交抛物线于另一个点 Q Q Q,且直线 M Q MQ MQ过点 B ( 1 , − 1 ) B(1,-1) B(11).

(1).求抛物线的方程。

分析:由题目图形可知, p 2 = 1 \cfrac{p}{2}=1 2p=1,则 p = 2 p=2 p=2,故顶点在坐标原点,开口向右的抛物线的方程为 y 2 = 2 p x y^2=2px y2=2px,即 y 2 = 4 x y^2=4x y2=4x

(2).求证:直线 Q N QN QN过定点。

分析:如果直线过定点 ( m , n ) (m,n) (mn),则直线的表达式必然应该能化为: y − n = k ( x − m ) y-n=k(x-m) yn=k(xm)类型。

设点 M ( 4 t 2 , 4 t ) M(4t^2,4t) M(4t24t),点 N ( 4 t 1 2 , 4 t 1 ) N(4t_1^2,4t_1) N(4t124t1),点 M ( 4 t 2 2 , 4 t 2 ) M(4t_2^2,4t_2) M(4t224t2),则由题目易知直线 M N MN MN的斜率存在,

k M N = 4 t − 4 t 1 4 t 2 − 4 t 1 2 = 1 t + t 1 k_{MN}=\cfrac{4t-4t_1}{4t^2-4t_1^2}=\cfrac{1}{t+t_1} kMN=4t24t124t4t1=t+t11,从而直线 M N MN MN的方程是 y = 1 t + t 1 ( x − 4 t 2 ) + 4 t y=\cfrac{1}{t+t_1}(x-4t^2)+4t y=t+t11(x4t2)+4t,即 x − ( t + t 1 ) y + 4 t t 1 = 0 x-(t+t_1)y+4tt_1=0 x(t+t1)y+4tt1=0

同理可知,直线 M Q MQ MQ的方程 x − ( t + t 2 ) y + 4 t t 2 = 0 x-(t+t_2)y+4tt_2=0 x(t+t2)y+4tt2=0,直线 N Q NQ NQ的方程 x − ( t 1 + t 2 ) y + 4 t 1 t 2 = 0 x-(t_1+t_2)y+4t_1t_2=0 x(t1+t2)y+4t1t2=0

又点 A A A在直线 M N MN MN上,从而有 4 t t 1 = 1 4tt_1=1 4tt1=1,即 t = 1 4 t 1 t=\cfrac{1}{4t_1} t=4t11;点 B B B在直线 M Q MQ MQ上,

从而有 1 + ( t + t 2 ) + 4 t t 2 = 0 1+(t+t_2)+4tt_2=0 1+(t+t2)+4tt2=0,即 1 + ( 1 4 t 1 + t 2 ) + 4 × 1 4 t 1 t 2 = 0 1+(\cfrac{1}{4t_1}+t_2)+4\times \cfrac{1}{4t_1}t_2=0 1+(4t11+t2)+4×4t11t2=0

化简得到 4 t 1 t 2 = − 4 ( t 1 + t 2 ) − 1 4t_1t_2=-4(t_1+t_2)-1 4t1t2=4(t1+t2)1

代入 N Q NQ NQ的方程,得到 x − ( t 1 + t 2 ) y − 4 ( t 1 + t 2 ) − 1 = 0 x-(t_1+t_2)y-4(t_1+t_2)-1=0 x(t1+t2)y4(t1+t2)1=0

y + 4 = 1 t 1 + t 2 ( x − 1 ) y+4=\cfrac{1}{t_1+t_2}(x-1) y+4=t1+t21(x1),故直线 N Q NQ NQ经过定点 ( 1 , − 4 ) (1,-4) (14)

解后反思:① 抛物线 y 2 = 4 x y^2=4x y2=4x上的任意点的坐标的设法一般是 ( x , y ) (x,y) (xy),本题采用 ( 4 t 2 , 4 t ) (4t^2,4t) (4t24t),是抛物线的参数方程的一种。② 注意直线过定点的证明思路。

x , y x, y x,y满足 { x − 2 ⩾ 0 y − 2 ⩾ 0 x + y − 8 ≤ 0 \left\{\begin{array}{l}x-2\geqslant0\\y-2\geqslant0\\ x+y-8 \leq 0\end{array}\right. x20y20x+y80 z = a x + b y ( a > b > 0 ) z=ax+by(a>b>0) z=ax+by(a>b>0)的最大值为 2 2 2,则直线 a x + b y − 1 = 0 ax+by-1=0 ax+by1=0所过的定点坐标为 \qquad

$A.(3,1)$ $B.(-1,3)$ $C.(1,3)$ $D.(-3,1)$

解析:由 x , y x, y x,y满足 { x − 2 ≥ 0 y − 2 ≥ 0 x + y − 8 ≤ 0 \left\{\begin{array}{l}x-2\geq 0\\y-2\geq 0\\x+y-8 \leq 0\end{array}\right. x20y20x+y80 作出可行域如图,

结合 y = − a b x + z b ( − a b < − 1 ) y=-\cfrac{a}{b}x+\cfrac{z}{b}(-\cfrac{a}{b}<-1) y=bax+bz(ba<1),由图可知,

C C C为目标函数取得最大值的最优解,联立 { y = 2 x + y − 8 = 0 \left\{\begin{array}{l}y=2\\x+y-8=0\end{array}\right. {y=2x+y8=0, 解得 C ( 6 , 2 ) C(6,2) C(6,2)

∴ 6 a + 2 b = 2 \therefore 6a+2b=2 6a+2b=2,即 3 a + b = 1 3a+b=1 3a+b=1,所以 b = 1 − 3 a b=1-3a b=13a

代入 a x + b y − 1 = 0 ax+by-1=0 ax+by1=0,得 a x + y − 3 a y − 1 = 0 ax+y-3ay-1=0 ax+y3ay1=0

整理为过定点的直线系方程形式: a ( x − 3 y ) + y − 1 = 0 a(x-3y)+y-1=0 a(x3y)+y1=0

{ x − 3 y = 0 y − 1 = 0 \left\{\begin{array}{l}x-3y=0\\y-1=0\end{array}\right. {x3y=0y1=0,解得 { x = 3 y = 1 \left\{\begin{array}{l}x=3\\y=1\end{array}\right. {x=3y=1,

则直线 a x + b y − 1 = 0 ax+by-1=0 ax+by1=0所过的定点坐标为 ( 3 , 1 ) (3,1) (3,1),故选 A A A.

对应练习

已知直线 l l l 的方程为 k x − y + 2 k + 1 = 0 kx-y+2k+1=0 kxy+2k+1=0 k ∈ R k\in R kR,则直线 l l l 恒过定点 ( − 2 , 1 ) (-2,1) (2,1) .

提示:整理变形为直线的点斜式方程形式, y − 1 = k ( x + 2 ) y-1=k(x+2) y1=k(x+2),即 y − 1 = k [ x − ( − 2 ) ] y-1=k[x-(-2)] y1=k[x(2)],比照点斜式方程形式 y − y 0 = k ( x − x 0 ) y-y_0=k(x-x_0) yy0=k(xx0),可知 x 0 = − 2 x_0=-2 x0=2 y 0 = 1 y_0=1 y0=1,即所求的定点为 ( − 2 , 1 ) (-2,1) (2,1) .

  • 17
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海之恋2068

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值