前言
待定系数法的设法技巧:当直线经过点 ( 0 , 1 ) (0,1) (0,1)时,我们常常设其解析式为 y = k x + 1 y=kx+1 y=kx+1,当直线经过点 ( 1 , 0 ) (1,0) (1,0)时,我们常常设其解析式为 x = k y + 1 x=ky+1 x=ky+1,
典例剖析
求证直线 ( 2 m + 1 ) x + ( m + 1 ) y = 7 m + 4 ( m ∈ R ) (2m+1)x+(m+1)y=7m+4(m\in R) (2m+1)x+(m+1)y=7m+4(m∈R)恒过某一个定点 P P P,并求其坐标。
法1:赋值法,令 m = 1 m=1 m=1,得到直线为 3 x + 2 y = 11 3x+2y=11 3x+2y=11;令 m = 2 m=2 m=2,得到直线为 5 x + 3 y = 18 5x+3y=18 5x+3y=18;联立求得交点为 P ( 3 , 1 ) P(3,1) P(3,1)。
再将点 P ( 3 , 1 ) P(3,1) P(3,1)代入直线验证, ( 2 m + 1 ) x + ( m + 1 ) y = ( 2 m + 1 ) × 3 + ( m + 1 ) × 1 = 7 m + 4 (2m+1)x+(m+1)y=(2m+1)\times 3+(m+1)\times 1=7m+4 (2m+1)x+(m+1)y=(2m+1)×3+(m+1)×1=7m+4,故直线 ( 2 m + 1 ) x + ( m + 1 ) y = 7 m + 4 ( m ∈ R ) (2m+1)x+(m+1)y=7m+4(m\in R) (2m+1)x+(m+1)y=7m+4(m∈R)恒过某一个定点 P ( 3 , 1 ) P(3,1) P(3,1)。
【补记】:当然还可以将这个解法更特殊化为,令 2 m + 1 = 0 2m+1=0 2m+1=0,得到 m = − 1 2 m=-\cfrac{1}{2} m=−21,代入原直线得到 y = 1 y=1 y=1;令 m + 1 = 0 m+1=0 m+1=0,得到 m = − 1 m=-1 m=−1,代入原直线得到 x = 3 x=3 x=3;联立求得交点为 P ( 3 , 1 ) P(3,1) P(3,1)。
赋值法原理说明图:由于题目中不论 m m m取到何值时,都对应平面内的唯一的一条直线,故可以给参数 m m m赋值,
法2:换元法,由直线方程的点斜式形式 y = k ( x − x 0 ) + y 0 y=k(x-x_0)+y_0 y=k(x−x0)+y0,可知直线必然经过点 P ( x 0 , y 0 ) P(x_0,y_0) P(x0,y0),故思考将其通过换元法改写为点斜式;
①当 m + 1 ≠ 0 m+1\neq 0 m+1=0时,由原直线得到 y = − 2 m + 1 m + 1 x + 7 m + 4 m + 1 y=-\cfrac{2m+1}{m+1}x+\cfrac{7m+4}{m+1} y=−m+12m+1x+m+17m+4,
令 − 2 m + 1 m + 1 = k -\cfrac{2m+1}{m+1}=k −m+12m+1=k,则得到 m = − k − 1 k + 2 m=\cfrac{-k-1}{k+2} m=