前言
求三角形的周长类的取值范围题目,可以看成三角函数图像性质和解三角形两大模块的一个结合点,考查频次比较高,希望仔细体会,加以注意;而且往往可以延申为求三角形的面积的取值范围或者四边形的周长的取值范围问题。此类问题的求解常用到均值不等式或转化为正弦型函数求解,其中的通法是转化为正弦型函数求解。
预备知识
- 均值不等式[注意等式变化为不等式]
给定表达式 a 2 + b 2 − a b = 9 a^2+b^2-ab=9 a2+b2−ab=9,变形得到 ( a + b ) 2 = 9 + 3 a b (a+b)^2=9+3ab (a+b)2=9+3ab,如果用均值不等式 a b ≤ ( a + b 2 ) 2 ab\leq (\cfrac{a+b}{2})^2 ab≤(2a+b)2替换题目中的 a b ab ab,原来的相等关系可以转化为不等关系,则有 ( a + b ) 2 ≤ 9 + 3 × ( a + b 2 ) 2 (a+b)^2\leq 9+3\times (\cfrac{a+b}{2})^2 (a+b)2≤9+3×(2a+b)2,得到 ( a + b ) 2 ≤ 36 (a+b)^2\leq 36 (a+b)2≤36,解不等式可以得到 a + b ≤ 6 a+b\leq 6 a+b≤6,故可求周长 a + b + c a+b+c a+b+c的范围;
如果用 a 2 + b 2 ≥ 2 a b a^2+b^2\ge 2ab a2+b2≥2ab替换题目中的 a + b a+b a+b,则原来的相等关系可以转化为不等关系,则有 2 a b ≤ 9 + a b 2ab\leq 9+ab 2ab≤9+ab,解不等式可以得到 a b ≤ 9 ab\leq 9 ab≤9;故可以利用 S △ A B C = 1 2 a b s i n C S_{\triangle ABC}=\cfrac{1}{2}absinC S△ABC=21absinC求三角形面积的范围。
- 正弦定理[角化边],
当已知 A = π 4 A=\cfrac{\pi}{4} A=4π, a = 2 a=\sqrt{2} a=2时,则可知 2 R = a s i n A = 2 2R=\cfrac{a}{sinA}=2 2R=sinAa=2,故 b = 2 R ⋅ s i n B b=2R\cdot sinB b=2R⋅sinB, c = 2 R ⋅ s i n C c=2R\cdot sinC c=2R⋅sinC,故求周长即 2 + 2 s i n B + 2 s i n C = 2 + 2 s i n B + 2 s i n ( 3 π 4 − B ) \sqrt{2}+2sinB+2sinC=\sqrt{2}+2sinB+2sin(\cfrac{3\pi}{4}-B) 2+2sinB+2sinC=2+2sinB+2sin(43π−B),转化为求正弦型函数的值域问题。
题目特点
此类题目往往都知道某一个角和其对边,是对边和对角的关系。
比如已知 A = π 3 A=\cfrac{\pi}{3} A=3π, a = 3 a=3 a=3,求三角形的周长 a + b + c a+b+c a+b+c的范围。
此时,思考的途径往往有两种:
①将周长式转化为正弦型求解,通用方法;
②利用均值不等式求得 b + c b+c b+c的最值,从而知道周长的最值,灵活方法;
如利用 a 2 = b 2 + c 2 − 2 b c c o s A a^2=b^2+c^2-2bccosA a2=b2+c2−2bccosA和 b c ≤ ( b + c 2 ) 2 bc\leq (\cfrac{b+c}{2})^2 bc≤(2b+c)2,求得 b + c b+c b+c的最值。
掌握变形
- 在 Δ A B C \Delta ABC ΔABC中,已知 ∠ A = π 3 \angle A=\cfrac{\pi}{3} ∠A=3π,
求 s i n B + s i n C = s i n B + s i n ( 2 π 3 − B ) sinB+sinC=sinB+sin(\cfrac{2\pi}{3}-B) sinB+sinC=sinB+sin(32π−B);此变形常考查周长的取值范围;
求 s i n B ⋅ s i n C = s i n B ⋅ s i n ( 2 π 3 − B ) sinB\cdot sinC=sinB\cdot sin(\cfrac{2\pi}{3}-B) sinB⋅sinC=sinB⋅sin(32π−B);此变形常考查面积的取值范围;
详细变形过程请参考辅助角公式中的应用场景;
典例剖析
【三角函数图像性质和解三角形结合】【角的范围不是难点】【2017•福州模拟】在 Δ A B C \Delta ABC ΔABC中,角 A , B , C A,B,C A,B,C的对边分别为 a , b , c a,b,c a,b,c,满足 ( 2 b − c ) ⋅ c o s A = a ⋅ c o s C (2b-c)\cdot cosA=a\cdot cosC (2b−c)⋅cosA=a⋅cosC。
(1)求角 A A A的大小;(考查角度:解三角形)
(2)若 a = 3 a=3 a=3,求 Δ A B C \Delta ABC ΔABC的周长的最大值。(考查角度:三角函数图像性质)
分析:(1)由 ( 2 b − c ) ⋅ c o s A = a ⋅ c o s C (2b-c)\cdot cosA=a\cdot cosC (2b−c)⋅cosA=a⋅cosC,以及正弦定理,
得 ( 2 s i n B − s i n C ) c o s A = s i n A c o s C (2sinB-sinC)cosA=sinAcosC (2sinB−sinC)cosA=sinAcosC,
所以 2 s i n B c o s A = s i n C c o s A + s i n A c o s C 2sinBcosA=sinCcosA+sinAcosC 2sinBcosA=sinCcosA+sinAcosC, 所以 2 s i n B c o s A = s i n ( C + A ) = s i n B 2sinBcosA=sin(C+A)=sinB 2sinBcosA=sin(C+A)=sinB,
因为 B ∈ ( 0 , π ) B\in (0,π) B∈(0,π),所以 s i n B ≠ 0 sinB\neq 0 sinB=0,
因为 A ∈ ( 0 , π ) A\in (0,π) A∈(0,π), c o s A = 1 2 cosA=\cfrac{1}{2} cosA=21,所以$A=\cfrac{\pi}{3} $。
(2)法1:均值不等式法,
由(1)得 A = π 3 A=\cfrac{\pi}{3} A=3π,且 a = 3 a=3 a=3,
则由余弦定理可得, a 2 = b 2 + c 2 − 2 b c c o s A a^2=b^2+c^2-2bccosA a2=b2+c2−2bccosA,
即 3 2 = b 2 + c 2 − b c = ( b + c ) 2 − 3 b c 3^2=b^2+c^2-bc=(b+c)^2-3bc 32=b2+c2−bc=(b+c)2−3bc,
即 ( b + c ) 2 = 9 + 3 b c ≤ 9 + 3 × ( b + c 2 ) 2 (b+c)^2=9+3bc\leq 9+3\times (\cfrac{b+c}{2})^2 (b+c)2=9+3bc≤9+3×(2b+c)2,视 b + c b+c b+c为整体,
解不等式得到, 1 4 ( b + c ) 2 ≤ 9 \cfrac{1}{4}(b+c)^2\leq 9 41(b+c)2≤9,即 b + c ≤ 6 b+c\leq 6 b+c≤6如果解单纯的数学不等式模型,得到 − 6 -6 −6 ⩽ \leqslant ⩽ b + c b+c b+c ⩽ \leqslant ⩽ 6 6 6,此处是实际问题,故首先需要 0 0 0 < < < b + c b+c b+c ⩽ \leqslant ⩽ 6 6 6,其实这还不够,还需要 3 3 3 < < < b + c b+c b+c ⩽ \leqslant ⩽ 6 6 6[两边之和大于第三边],如果三角形还有形状上的要求,那么还需要添加其他的限制; \quad ,当且仅当 b = c = 3 b=c=3 b=c=3时取得等号。
则 ( a + b + c ) m a x = 3 + 6 = 9 (a+b+c)_{max}=3+6=9 (a+b+c)max=3+6=9,
故 Δ A B C \Delta ABC ΔABC的周长最大值为9。
法2:三角函数法,由(1)得$A=\cfrac{\pi}{3} $,
由正弦定理得 b s i n B = c s i n C = a s i n A = 3 3 2 = 2 3 \cfrac{b}{sinB}=\cfrac{c}{sinC} =\cfrac{a}{sinA} =\cfrac{3}{\frac{\sqrt{3}}{2}} =2\sqrt{3} sinBb=sinCc=sinAa=233=23,
所以 b = 2 3 ⋅ s i n B b=2\sqrt{3}\cdot sinB b=23⋅sinB; c = 2 3 ⋅ s i n C c=2\sqrt{3}\cdot sinC c=23⋅sinC,
则所求的 Δ A B C \Delta ABC ΔABC的周长:
l = 3 + 2 3 ⋅ s i n B + 2 3 ⋅ s i n C l=3+2\sqrt{3}\cdot sinB+2\sqrt{3}\cdot sinC l=3+23⋅sinB+23⋅sinC