齐次式的相关知识

前言

  • 高中数学中没有提到齐次式,但是在具体运算中时不时的会用到这一理论,故做以总结。与齐次式紧密相关的是变量集中策略。

相关概念

以表达式 2 x 2 − 3 x y + y 2 2x^2-3xy+y^2 2x23xy+y2为例,其中的每一项的次数都是二次的,平齐的,故 2 x 2 − 3 x y + y 2 2x^2-3xy+y^2 2x23xy+y2称为关于 x , y x,y xy的二次齐次式; 3 x + 4 y 3x+4y 3x+4y是关于 x x x y y y的一次齐次式;那么 2 x 2 − 3 x + y 2 2x^2-3x+y^2 2x23x+y2不能称为二次齐次式,原因是中间项 3 x 3x 3x为一次式。

引申拓展

  • 关于 x , y x,y xy的一次齐次式:

举例: 3 x + 4 y 3x+4y 3x+4y 2 x 2x 2x 5 y 5y 5y

  • 关于 x , y x,y xy的二次齐次式:

举例: 3 x 2 − 4 x y + 2 y 2 3x^2-4xy+2y^2 3x24xy+2y2 x 2 + 2 y 2 x^2+2y^2 x2+2y2 2 x 2 + 3 x y 2x^2+3xy 2x2+3xy 2 x y + 3 y 2 2xy+3y^2 2xy+3y2

  • 关于 s i n θ , c o s θ sin\theta,cos\theta sinθcosθ的一次齐次式:

举例: 2 s i n θ − 3 c o s θ 2sin\theta-3cos\theta 2sinθ3cosθ 3 s i n θ 3sin\theta 3sinθ 4 c o s θ 4cos\theta 4cosθ

  • 关于 s i n θ , c o s θ sin\theta,cos\theta sinθcosθ的二次齐次式:

举例: 3 s i n 2 θ − 4 s i n θ c o s θ + 2 c o s 2 θ 3sin^2\theta-4sin\theta cos\theta+2cos^2\theta 3sin2θ4sinθcosθ+2cos2θ s i n 2 θ + 2 c o s 2 θ sin^2\theta+2cos^2\theta sin2θ+2cos2θ 2 s i n 2 θ + 3 s i n θ c o s θ 2sin^2\theta+3sin\theta cos\theta 2sin2θ+3sinθcosθ 2 s i n θ c o s θ + 3 c o s 2 θ 2sin\theta cos\theta+3cos^2\theta 2sinθcosθ+3cos2θ

2 sin ⁡ 2 θ 2\sin^2\theta 2sin2θ cos ⁡ 2 θ \cos^2\theta cos2θ

  • 分式形式的一次齐次式

cos ⁡ ( α + π 4 ) sin ⁡ α + 2 cos ⁡ α = 2 2 ( cos ⁡ α − sin ⁡ α ) sin ⁡ α + 2 cos ⁡ α \cfrac{\cos(\alpha+\cfrac{\pi}{4})}{\sin\alpha+2\cos\alpha}=\cfrac{\cfrac{\sqrt{2}}{2}(\cos\alpha-\sin\alpha)}{\sin\alpha+2\cos\alpha} sinα+2cosαcos(α+4π)=sinα+2cosα22 (cosαsinα) = 2 2 cos ⁡ α − 2 2 sin ⁡ α sin ⁡ α + 2 cos ⁡ α =\cfrac{\cfrac{\sqrt{2}}{2}\cos\alpha-\cfrac{\sqrt{2}}{2}\sin\alpha}{\sin\alpha+2\cos\alpha} =sinα+2cosα22 cosα22 sinα

  • 分式形式的一次齐次式和二次齐次式运算

sin ⁡ θ sin ⁡ θ + cos ⁡ θ \cfrac{\sin\theta}{\sin\theta+\cos\theta} sinθ+cosθsinθ ± \pm ± sin ⁡ 2 θ \sin2\theta sin2θ

sin ⁡ θ ( 1 + sin ⁡ 2 θ ) sin ⁡ θ + cos ⁡ θ = sin ⁡ θ sin ⁡ θ + cos ⁡ θ ⋅ ( 1 + sin ⁡ 2 θ ) \cfrac{\sin\theta(1+\sin2\theta)}{\sin\theta+\cos\theta}=\cfrac{\sin\theta}{\sin\theta+\cos\theta}\cdot (1+\sin2\theta) sinθ+cosθsinθ(1+sin2θ)=sinθ+cosθsinθ(1+sin2θ)

= sin ⁡ θ sin ⁡ θ + cos ⁡ θ ⋅ sin ⁡ 2 θ + cos ⁡ 2 θ + 2 sin ⁡ θ cos ⁡ θ sin ⁡ 2 θ + cos ⁡ 2 θ =\cfrac{\sin\theta}{\sin\theta+\cos\theta}\cdot \cfrac{\sin^2\theta+\cos^2\theta+2\sin\theta\cos\theta}{\sin^2\theta+\cos^2\theta} =sinθ+cosθsinθsin2θ+cos2θsin2θ+cos2θ+2sinθcosθ

使用场景

由于是齐次式,所以常常可以利用变量集中思想,减少变量的个数,常涉及到的变形有变量集中策略,分数裂项法,常见使用于分式型函数或可以转化为分式型函数,或多项式型函数。可以借助下例体会。

  • 如关于 x , y x,y xy的一次齐次式的分式形式常用的下述变换:

2 x + 3 y x − y = 2 x y + 3 x y − 1 = 令 x y = t 换元法 2 t + 3 t − 1 \cfrac{2x+3y}{x-y}=\cfrac{2\frac{x}{y}+3}{\frac{x}{y}-1}\xlongequal[令\frac{x}{y}=t]{换元法}\cfrac{2t+3}{t-1} xy2x+3y=yx12yx+3换元法 yx=tt12t+3 = 2 t − 2 + 5 t − 1 = 2 + 5 t − 1 =\cfrac{2t-2+5}{t-1}=2+\cfrac{5}{t-1} =t12t2+5=2+t15

  • 如关于 x , y x,y xy的二次齐次式的分式形式常用的下述变换:

z = x 2 + y 2 x y = x y + y x = k + 1 k z=\cfrac{x^2+y^2}{xy}=\cfrac{x}{y}+\cfrac{y}{x}=k+\cfrac{1}{k} z=xyx2+y2=yx+xy=k+k1

  • 关于 s i n θ , c o s θ sin\theta,cos\theta sinθcosθ的一次或二次齐次式的分式形式常用的下述变换:

比如: a sin ⁡ θ + b cos ⁡ θ c sin ⁡ θ + d cos ⁡ θ = 分子分母是 s i n θ , c o s θ 的一次齐次式 分子分母同除以 c o s θ a tan ⁡ θ + b c tan ⁡ θ + d \cfrac{a\sin\theta+b\cos\theta}{c\sin\theta+d\cos\theta}\xlongequal[分子分母是sin\theta,cos\theta的一次齐次式]{分子分母同除以cos\theta}\cfrac{a\tan\theta+b}{c\tan\theta+d} csinθ+dcosθasinθ+bcosθ分子分母同除以cosθ 分子分母是sinθ,cosθ的一次齐次式ctanθ+datanθ+b ( a , b , c , d a,b,c,d a,b,c,d为常数);

小结:实现了二元 s i n θ 、 c o s θ sin\theta、cos\theta sinθcosθ向一元 t a n θ tan\theta tanθ的转化;

比如: sin ⁡ 2 θ − cos ⁡ 2 θ 1 + sin ⁡ 2 θ = 2 s i n θ c o s θ − c o s 2 θ 2 s i n 2 θ + c o s 2 θ = 分子分母是 s i n θ , c o s θ 的二次齐次式 分子分母同除以 c o s 2 θ 2 t a n θ − 1 2 t a n 2 θ + 1 \cfrac{\sin2\theta-\cos^2\theta}{1+\sin^2\theta}=\cfrac{2sin\theta cos\theta-cos^2\theta}{2sin^2\theta+cos^2\theta}\xlongequal[分子分母是sin\theta,cos\theta的二次齐次式]{分子分母同除以cos^2\theta}\cfrac{2tan\theta-1}{2tan^2\theta+1} 1+sin2θsin2θcos2θ

  • 9
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海之恋2068

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值