为什么用功率谱密度来描述随机信号?

我们知道信号可以分成能量信号和功率信号,能量信号指能量有限,平均功率为0的信号,具体表现就是时间轴上有限的信号。 功率信号指的是平均功率有限而能量无穷大的信号,具体表现是时间轴上无穷的信号。重点提一下周期信号, 周期信号也是功率信号,时间上延续无穷,它的平均功率等于时间上负无穷到正无穷能量的积分除以无穷时间(极限表达式)也等于一个周期内的能量除以周期时间。

我们分析信号可以在时域上分析,也可以在频域上分析, 对于能量信号,它们满足狄雷克利条件,所以可进行傅里叶变换得到它的频谱。
对于周期信号来说,它不满足狄雷克利条件,但引入冲激函数等广义函数后可以对周期信号的频谱进行描述。
对于非周期的功率信号来说,这可就难办了,即使引入广义函数你也求不出来它的对应的傅里叶变换的表达式。
周期信号持续时间也是无限长,也同样不满足觉得可积的条件,本来也不存在傅里叶变换,但引入了广义函数,冲激函数什么的,使得功率信号也可以用傅里叶变换的形式表示。 至于随机信号,它一般也是功率信号, 随机信号的功率谱是所有样本信号的功率谱的数学期望值。 理论上, 也可以用所有样本信号的频谱的数学期望来描述随机过程。功率谱的求取过程是:把功率信号截断,求截断信号的能量谱,然后能量谱除以截短信号的时间取这个截短时间的极限就是这个功率信号的功率谱, 对于随机过程来说, 求得所有样本的功率谱然后取数学期望就是随机过程 的功率谱。可是功率信号的傅里叶变换怎么求? 截短,求能量信号的傅里叶变换,除以时间再取极限?? 好像也可以。。 其实这种求法对于有限取值的随机信号可以求出来,如二进制基带信号的功率谱的求法, 当随机过程比较复杂时,可操作性不强,我们一般先求平稳随机过程的自相关函数,它的傅里叶变换就是功率谱。。。感觉没什么区别,就是调换了一下计算顺序嘛。


今天我在看二进制基带信号的频谱特性时, 随机信号可写成一个确知的信号+一个均值为零的随机信号之和形式。 因此如若我们像求功率谱那样去求频谱那么随机信号部分的就是0,只剩下了确知信号的频谱了, 所以没有意义哈。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值