第十六章:动态规划入门

本文介绍了动态规划的概念,通过生活中的凑钱问题对比贪心策略,揭示了动态规划的核心思想——无后效性和最优子结构。接着通过01背包问题,阐述了动态规划的解题步骤和状态转移方程,展示了如何用动态规划优化问题的求解。文章还提及了动态规划的空间优化技巧——滚动数组,并提供了多个实际问题的应用示例,如装箱问题和选数字游戏等。
摘要由CSDN通过智能技术生成

 动态规划入门

什么是动态规划,我相信大多数同学都听过关于他的传说,但是都未真正的见识到他的庐山真面目。动态规划一直是算法竞赛中的重中之重,也是非常难的一类问题。无论是小学竞赛还是后面初高中和大学算法竞赛,都会时常见到他的身影。动态规划作为一类非常复杂的算法问题,因此现阶段,我们只需要对动态规划做一个初步的了解即可,随着我们后面的学习和知识的不断积累,还会继续深入的学习动态规划的其他知识点,所以同学们在学习本章节时也不要有太大的负担。

好消息是,最近几年,合肥市信息学竞赛都未涉及动态规划类型的题目。坏消息是,在去年的庐阳区区赛的最后一题考察了动态规划的题目。因此大家对于一些简单的动态规划类型的题目还是需要掌握的,小学阶段的动态规划代码都非常简单,因此学习的重点在于,遇到一道题目的时候我们为什么要选择使用动态规划问题?希望同学们带着这个问题学习动态规划章节。

本阶段,我们只讲解动态规划中的两个最简单的问题,分别是线性动态规划问题和01背包问题。

现在,我们试着从一个例子带大家一步步来认识什么是动态规划吧。

从一个生活问题谈起

  先来看看生活中经常遇到的事吧;假设您是个土豪,身上带了足够的1、5、10、20、50、100元面值的钞票。现在您的目标是凑出某个金额w,需要用到尽量少的钞票。

  依据生活经验,我们显然可以采取这样的策略:能用100的就尽量用100的,否则尽量用50的……依次类推。在这种策略下,666=6×100+1×50+1×10+1×5+1×1,共使用了10张钞票。

  很显然,这种算法思想大家非常熟悉,这就是“贪心”。但是,这种贪心策略一定是对的吗?

  举另外一个例子,如果我们换一组钞票的面值,贪心策略就也许就不成立了。如果一个奇葩国家的钞票面额分别是1、5、11,那么我们在凑出15的时候,贪心策略会出错:
  15=1×11+4×1 (贪心策略使用了5张钞票)
  15=3×5 (正确的策略,只用3张钞票)
  为什么会这样呢?贪心策略错在了哪里?

鼠目寸光

  刚刚已经说过,贪心策略的纲领是:“尽量使接下来面对的w更小”。这样,贪心策略在w=15的局面时,会优先使用11来把w降到4;但是在这个问题中,凑出4的代价是很高的,必须使用4×1。如果使用了5,w会降为10,虽然没有4那么小,但是凑出10只需要两张5元。
  在这里我们发现,贪心是一种只考虑眼前情况的策略。

  那么,现在我们怎样才能避免鼠目寸光呢?

  如果直接暴力枚举凑出w的方案,明显复杂度过高。太多种方法可以凑出w了,枚举它们的时间是不可承受的。我们现在来尝试找一下性质。

  重新分析刚刚的例子。w=15时,我们如果取11,接下来就面对w=4的情况;如果取5,则接下来面对w=10的情况。我们发现这些问题都有相同的形式:“给定w,凑出w所用的最少钞票是多少张?”接下来,我们用f(n)来表示“凑出n所需的最少钞票数量”。

  那么,如果我们取了11,最后的代价(用掉的钞票总数)是多少呢?
  明显cost=f(4)+1=4+1=5 ,它的意义是:利用11来凑出15,付出的代价等于f(4)加上自己这一张钞票。现在我们暂时不管f(4)怎么求出来。
  依次类推,马上可以知道:如果我们用5来凑出15,cost就是f(10)+1=2+1=3 。

  那么,现在w=15的时候,我们该取那种钞票呢?当然是各种方案中,cost值最低的那一个!

  • 取11:cost=f(4)+1=4+1=5
  • 取5: cost=f(10)+1=2+1=3
  • 取1: cost=f(14)+1=4+1=5

  显而易见,cost值最低的是取5的方案。我们通过上面三个式子,做出了正确的决策!

这给了我们一个至关重要的启示—— f(n)只与f(n-1),f(n-5),f(n-11) 相关;更确切地说:

f(n)=min{f(n-1),f(n-5),f(n-11)}+1;

  这个式子是非常激动人心的。我们要求出f(n),只需要求出几个更小的f值;既然如此,我们从小到大把所有的f(i)求出来不就好了?注意一下边界情况即可。代码如下:

#include<bits/stdc++.h>
using namespace std;
int main()
{
    int f[105],i,n,cost;
    cin>>n;
    f[0]=0;
    for(i=1;i<=n;i++)
    {   
        cost=INT_MAX;
        if(i-1>=0)  cost=min(cost,f[i-1]+1);  
        if(i-5>=0)  cost=min(cost,f[i-5]+1);
        if(i-11>=0) cost=min(cost,f[i-11]+1);
        f[i]=cost;
        cout<<"f["<<i<<"]"<<"="<<f[i]<<endl; 
    }
    cout<<f[n]; 
}

Copy

  我们以O(n)的复杂度解决了这个问题。现在回过头来,我们看看它的原理:

  • f(n)只与f(n-1),f(n-5),f(n-11) 的值相关。
  • 我们只关心f(w)的值,不关心是怎么凑出w的。

  这两个事实,保证了我们做法的正确性。它比起贪心策略,会分别算出取1、5、11的代价,从而做出一个正确决策,这样就避免掉了“鼠目寸光”!

  它与暴力的区别在哪里?我们的暴力枚举了“使用的硬币”,然而这属于冗余信息。我们要的是答案,根本不关心这个答案是怎么凑出来的。譬如,要求出f(15),只需要知道f(14),f(10),f(4)的值。其他信息并不需要。我们舍弃了冗余信息。我们只记录了对解决问题有帮助的信息——f(n).

  我们能这样干,取决于问题的性质:求出f(n),只需要知道几个更小的f(c)。我们将求解f(c)称作求解f(n)的“子问题”。

  这就是DP(动态规划,dynamic programming).

  将一个问题拆成几个子问题,分别求解这些子问题,即可推断出大问题的解。

思考题:请稍微修改代码,输出我们凑出w的方案。

几个简单的概念

【无后效性】

  一旦f(n)确定,“我们如何凑出f(n)”就再也用不着了。

  要求出f(15),只需要知道f(14),f(10),f(4)的值,而f(14),f(10),f(4)是如何算出来的,对之后的问题没有影响。

  “未来与过去无关”,这就是无后效性。

  (

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值