第三十章:普通树的存储和遍历

本文介绍了有根树的四种存储方法:父亲表示法、孩子表示法、父亲孩子表示法和孩子兄弟表示法,以及它们的优缺点。此外,详细讲解了树的先根遍历和层次遍历,提供了C++代码实现。最后,总结了不同存储方法的适用场景,并给出了相关练习题目。
摘要由CSDN通过智能技术生成

 前置知识:树的概念、向量(vector)

为了保证学习效果,请保证已经掌握前置知识之后,再来学习本章节!

学习目标

  • 了解树的几种存储方法的思想、实现方式和各自的优缺点
  • 掌握树的存储方法的代码实现
  • 掌握树的两种遍历方式:先根遍历(DFS)和层次遍历方式(BFS)

引入

显然  的定义是递归的, 是一种递归的数据结构。树作为一种逻辑结构,同时也是一种 分层 结构,具有以下两个特点:

1)树的根结点没有前驱结点,除根结点之外的所有结点有且只有一个前驱结点。

2)树中所有结点可以有零个或多个后继结点。

有根树的存储

父亲表示法

除根节点外,其他结点有且仅有一个父结点,因此,我们可以把每一条树边存储在其子结点上,形式为:ii 结点的父亲是 jj 结点,如下图所示。

父亲表示法的存储结构基本实现代码如下:

int fa[N];
fa[a] = 0;     // 表示 a 是根,也可用 -1 表示父结点不存在,具体取决于代码的写法
fa[x] = y;     // 连接 x 和 y,结点 x 的父结点是 y

Copy

如果需要保存结点信息,那么可以定义成结构体实现:

struct node{
    int data;            // 结点信息,也可能是其他数据类型
    int father;          // 父结点编号
}
node tree[N];            // 定义一棵树
void link(int x, int y)  // x 的父结点是 y
{
    tree[x].father = y;  // 连接 x 和 y
}

Copy

优点:省空间,并且对于任意结点,可以方便找到其父结点;

缺点:找子结点很麻烦,需要遍历所有结点;

父亲表示法最省空间,后面学习的“并查集”就是采用此法保存树上的父子关系。

孩子表示法

对于每个结点,有一个数据域和多个指针域,数据域保存当前结点的数据,指针域的每个指针指向一个孩子结点 ,例如下图:

结构体写法示例代

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值