LangChain入门:6.HuggingFace API初体验

LangChain 支持的可绝不只有 OpenAI 模型,那么你能否试一试 HuggingFace 开源社区中的其它模型呢?在这篇技术博文中,我将介绍如何快速使用HuggingFace API。HuggingFace API为开发者提供了一个简单而强大的工具,可以轻松地集成各种NLP模型和功能到他们的应用程序中。

了解HuggingFace API

HuggingFace API是一个基于云端的服务,允许开发者通过简单的HTTP请求来访问各种NLP模型和工具。使用HuggingFace API,开发者无需担心模型的部署和维护,可以专注于构建自己的应用逻辑。

创建API密钥

要开始使用HuggingFace API,首先需要创建一个API密钥。这个密钥将用于身份验证和访问API服务。下面是创建API密钥的步骤:

  1. 登录到(HuggingFace)的官方网站。

  2. 导航到用户设置页面。
    在这里插入图片描述

  3. 在API密钥部分,点击“Generate a new API token”按钮生成一个新的API密钥。
    在这里插入图片描述

  4. 将生成的API密钥保存好,它将用于后续的API访问。

使用LangChain访问API进行模型推理

一旦获得了API密钥,就可以开始使用HuggingFace API进行模型推理了。下面是一个简单的示例,演示调用Hugging Face Hub模型来生成中文文本,从BigScience组织开发的Hugging Face Hub模型中加载一个名为"bloom-1b7"的模型,并设置了一些参数,如temperature和max_length,对输入的文本"请你给违反交通规则的小朋友讲讲危害吧"进行生成,并打印生成的文本。:

import os
os.environ["HUGGINGFACEHUB_API_TOKEN"] = "填入申请得到的token"
from langchain import HuggingFaceHub
llm = HuggingFaceHub(
    repo_id="bigscience/bloom-1b7",
    model_kwargs={"temperature":0.2, "max_length":500}
    )

text=llm.invoke("请你给违反交通规则的小朋友讲解危害!")

print(text)

这个代码可以用于生成中文文本,例如用于自动生成问答、文章或者其他类型的文本。通过调整模型参数和输入文本,可以生成不同类型的文本。

注意:

导入Hugging Face Hub库前需要安装huggingface_hub包

pip install huggingface_hub

结语

通过本文的介绍,我们了解了如何使用HuggingFace API来快速构建自然语言处理应用。从创建API密钥到实际的模型推理,HuggingFace API提供了一个简单而强大的平台,帮助开发者轻松地集成各种NLP模型和功能到他们的应用程序中。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Hugo_Hoo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值