股息红利与投资回报

获取股息红利,是股东投资于上市公司的基本目的,也是上市公司对股民的主要回报。但股息红利并不是上市公司给予股东的全部回报,而仅仅只是其中的一部分。
1995 年沪深股市分红情况来看,上市公司的分红率 ( 平均每股分红派息额 / 平均每股收益 ) 一般约为 70 %,剩下的税后利润 ( 总数的 30 ) 都充实到了资本公积金中,成为企业的发展基金。所以西方股市分析中单纯地只将股息红利作为上市公司对股民的全部回报是片面的,只要是上市公司实现的利润,它都是对股东投资的回报,因为资本公积金的增加也就是股东权益的增加,它增强了上市公司的经营实力,为未来的经营奠定了基础。
因为股息红利不是收益的全部,所以将分红派息额与平均每股净资产相比较,上市公司资本回报水平一般都比较低, 1995 年沪深股市约为 7 %左右,远远低于同期银行存款利率或国债利率 (11 %左右 ) 。而实际上 1995 年沪深股市上市公司的平均净资产收益率约为 11 %。
在论述股票的收益性时,人们都认为股票的收益要高于银行储蓄或国债。而在实际中,由于股票的价格与其所包含的净资产数量相脱节,股票的投资收益要远远低于储蓄利率或国债利率。若用平均股价来衡量,沪深股市的平均股价收益率 ( 平均每股税后利润 / 平均每股股价 ) 只有 3 %左右,也就相当于一年期的活期储蓄。
产生这种差异的原因是在比较中应用了不同的基数。在论述股票的收益率时,人们一般是将股票的收益与其面值相比较,如沪深股市 1995 年的面值分红率 ( 平均每股的股息红利 / 股票面值 ) 17 %,它远远高于当年的定期储蓄利率或国债利率。而实际的投资回报是以实际投入为基数计算的,它不是以股票的面值为分母,而是以平均股价为分母,所以股票投资的实际收益要低得多,如果将股民在交易中所消耗的交易税、费计算在内,股民的收益还要低。
业绩增长与投资回报

股民的回报来自上市公司的经营业绩,业绩好,股民的回报就高;若上市公司经营不善,股民的回报就少,甚至没有任何回报。
在谈及上市公司的发展时,营业收入、净利润、净资产收益率是经常被用来论证上市公司经营业绩的,一些投资价值报告也常应用这几个指标的增长率来说明公司对股东的回报。
实际上,营业收入是一家企业在一年中取得的收入之总和,它是一家企业的经营规模。对于一家生产型的公司,营业收入是销售额;对于一家服务性企业,它是所提供劳务的总收入。如果将股民比着一家企业,营业收入就是一年中股民卖出股票的总交易额。所以,营业收入表示的是一种销售规模,销售的越多,营业收入就越大,而对于一家贸易公司来说,资金周转的越快,营业收入也就越大。
由于营业收入是一家企业的毛收入,它没有扣减经营支出即成本,它不是上市公司的经营业绩,所以经营收入的增长与否,还谈不上是对股民的回报。对于同一家企业来说,即使今年的营业收入比往年有成倍的增加,但如果成本上升更快,企业的利润有可能比往年要低或发生亏损。所以,上市公司营业收入的增减与它对股民的回报没有直接的关系。
净利润是一家公司在一年的经营成果,它是股息红利的最高限额。净利润高,股民能分得的股息红利就高,所以净利润的增减就影响股东的投资回报。但在将净利润用来考证上市公司对股民的回报时,应该注意股民的投入是否增加了,如果股民的投入增加了,净利润的增长就是理所当然的。如某上市公司现有 1000 万的净资产,这几年的净资产收益率都维持在 10 %,这就是说,某一年的净利润为 100 万。如果在年终分红时,上市公司将这 100 万的利润都回报了股民,则来年的净利润还是 100 万;如果公司在本年度不分红,很显然,由于其净资产额达到了 1100 万,明年的利润就应该达到 110 万,比今年增长 10 %。事实上,这 10 %的净利润增长并不是公司经营有方所致,而是股东增加了投入。
在我国沪深股市,由于上市公司频繁配股,且配股比例高达 30 %,企业的经营资本一年比一年雄厚,相应地上市公司净利润的增幅每年也应在 30 %以上,上市公司经营的扩张主要是股民投入增加的缘故,而并非上市公司的经营能力增强了。
衡量上市公司回报能力的最好指标是净资产收益率,它是每个单位净资产的获利能力,因为它是一个效益指标,就很容易用它与其它领域的投资收益作比较。如我国沪深股市上市公司 1993 年平均净资产收益率为 16 %, 1994 年为 13 %, 1995 年约为 11 %,当股民购买股票的价格与上市公司的每股净资产值相当时,股民的收益回报 ( 不包括价差 ) 就等于净资产收益率。
在上市公司的利润增加时,如果其净资产收益率没有提高,就说明是由于加大了投入而引起的利润扩张,如果在净利润增加的同时净资产收益率也有所提高,就说明公司的经营能力增强了,其对股东的回报也实实在在地提高了。 
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值