Learning to Learn without Gradient Descent by Gradient Descent论文解析(黑箱优化问题)

论文探讨了利用元学习解决全局黑箱优化问题,特别是通过RNN优化器无需梯度下降也能进行优化。研究对比了不同损失函数,并在各种优化基准和机器学习超参数调整任务上展示了实验结果,证明这种方法在某些情况下优于传统贝叶斯优化。
摘要由CSDN通过智能技术生成

本篇论文属于元学习和黑箱函数优化的交叉领域,其中将元学习的思想应用于黑箱函数优化。这篇论文发表于2017年。
对于黑箱函数优化方法我了解的不太多,因此本文的不可避免的会有一些理解不到位的地方。

想要了解贝叶斯优化和高斯过程的,可以看我翻译的两篇文章:

1 Introduction

发展心理学表明婴儿具有多个针对核心知识的分散的系统,通过这些系统,他们可以更快地学习新知识和技能。目前最有说服力的观点认为,是进化过程导致了快速学习能力的出现。

因此,很多学者致力于打造能够快速学习的模型。在本文的工作中,元学习的目标是为全局黑箱优化(global black-box optimization)打造一个算法。特别地,这个算法设法解决为一个未知的损失函数 f f f寻找全局最小值的问题。
x ∗ = a r g m i n x ∈ X f ( x ) x* = argmin_{x \in X}f(x) x=argminxXf(x)
对学习器来说,这个黑箱函数 f f f在测试阶段是不可知的,但是可以使用一个query点 x x x来进行评估,从而输出一个确定的或随机的值 y ∈ R y \in R yR, 使得 f ( x ) = E [ y ∣ f ( x ) ] f(x)=E[y|f(x)] f(x)=E[yf(x)]。换句话说,我们只能通过无偏的有噪点观测 y y y(逐点观测)来观测函数 f f f

贝叶斯优化通常被用于解决黑箱函数的全局优化问题,本文将用Meta-Learning的方法来解决这个问题,并用来与贝叶斯优化进行对比。

2 Learning Black-box Optimization

黑箱优化算法的一般步骤可以总结如下:

  1. 给定一个当前状态 h t h_t ht,提出一个query点 x t x_t xt
  2. 观察到输出 y t y_t yt
  3. 更新任何可更新的参数,从而得到新状态 h t + 1 h_{t+1} ht+1

在这工作中将使用RNN来定义一个更新参数的方法:
h t , x t = R N N θ ( h t − 1 , x t − 1 , y t

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值