MAML复现实验结果汇总(取最好的情形)

本文汇总了MAML在Omniglot和miniImageNet数据集上的复现实验结果,对比了原始论文与复现的精度差异,探讨了transductive Learning的影响。在5-way-1-shot和5-way-5-shot等场景下,复现结果接近原论文,但在20-way任务上存在差距。
摘要由CSDN通过智能技术生成

2020/5/10更新:

Reptile这篇论文中说,MAML的实验使用到了transductive Learning的实验设定。关于transductive Learning你可以理解成MAML作者汇报的是训练中query集的结果,而不是我们通常意义的测试集中query集的结果。
这个图表来自Reptile的那篇论文。
在这里插入图片描述
以下是原文:


下面是我进行的复现实验的实验结果。

除了20-way-N-shot的部分,其他实验结果基本都能对应上。

附:
MAML模型无关的元学习代码完整复现(Pytorch版)
MAML复现全部细节和经验教训(Pytorch)

Omniglot数据集

5-way-1-shot

MAML: 98.7 ± 0.4 % 98.7 \pm 0.4\% 98.7±0.4%

评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值