第六章 积分法与反常积分

6.1 换元积分法

一、不定积分的换元积分法 6.1.1

(一)第一换元积分法

【定理1】若 ∫ g ( u ) d u = G ( u ) + C \int g(u)\rm du = G(u) + C g(u)du=G(u)+C,且函数 h(x) 可导,则
∫ g ( h ( x ) ) h ′ ( x ) d x = G ( h ( x ) ) + C \int g(h(x))h'(x)\rm dx =G(h(x)) + C g(h(x))h(x)dx=G(h(x))+C

(二)第二换元积分法 6.1.2

【定理2】若 ∫ f ( h ( t ) ) h ′ ( t ) d t = G ( t ) + C \int f(h(t))h'(t)\rm dt =G(t) + C f(h(t))h(t)dt=G(t)+C,且函数 x=h(t) 的导数不等于零,则
∫ f ( x ) d x = G ( h − 1 ( x ) ) + C \int f(x)\rm dx =G(h^{-1}(x)) + C f(x)dx=G(h1(x))+C

二、定积分的换元积分法 6.1.3

【定理3】若函数 f(x) 在区间 [a, b] 上连续,且函数 x=g(t) 在 [α, β] 上有连续导数, g [ α , β ] ⊂ [ a , b ] g[α, β] \subset [a, b] g[α,β][a,b],又 g(α) = a,g(β) = b,则
∫ a b f ( x ) d x = ∫ α β f ( g ( t ) ) g ′ ( t ) d t \int_a^bf(x)\rm dx = \int_α^βf(g(t))g'(t)\rm dt abf(x)dx=αβf(g(t))g(t)dt

注:

1、一般来说,下列函数 x k sin ⁡ b x x^k\sin bx xksinbx x k cos ⁡ b x x^k\cos bx xkcosbx x k e a x x^ke^{ax} xkeax x k ln ⁡ x x^k\ln x xklnx x k arcsin ⁡ x x^k\arcsin x xkarcsinx x k arctan ⁡ x x^k\arctan x xkarctanx e a x sin ⁡ b x e^{ax}\sin bx eaxsinbx e a x cos ⁡ b x e^{ax}\cos bx eaxcosbx 等形式适用分部积分法。

2、当被积函数为 x k sin ⁡ b x x^k\sin bx xksinbx x k arctan ⁡ x x^k\arctan x xkarctanx 等形式时,利用分部积分公式时,应对 u = ln ⁡ x u = \ln x u=lnx u = arctan ⁡ x u = \arctan x u=arctanx求导。

3、当被积函数为 x k ln ⁡ x x^k\ln x xklnx x k e a x x^ke^{ax} xkeax 等形式时,利用分部积分公式时,应对 u = x k u = x^k u=xk 求导。

4、当被积函数为 e a x sin ⁡ b x e^{ax}\sin bx eaxsinbx e a x cos ⁡ b x e^{ax}\cos bx eaxcosbx 等形式时,应用分部积分公式可导出含有原积分的方程。

6.2 分部积分法

一、不定积分的分部积分法 6.2.1

【定理4】设函数 u=u(x) 与 v=v(x) 均是可导函数,且不定积分 ∫ u ( x ) v ′ ( x ) d x \int u(x)v'(x)\rm dx u(x)v(x)dx 存在,则不定积分 ∫ u ′ ( x ) v ( x ) d x \int u'(x)v(x)\rm dx u(x)v(x)dx 存在,且
∫ u ( x ) v ′ ( x ) d x = ∫ ( u ( x ) v ( x ) ) ′ d x − ∫ u ′ ( x ) v ( x ) d x \int u(x)v'(x)\rm dx = \int (u(x)v(x))'\rm dx - \int u'(x)v(x)\rm dx u(x)v(x)dx=(u(x)v(x))dxu(x)v(x)dx

∫ u ( x ) d u ( x ) = u ( x ) v ( x ) − ∫ u ( x ) d v ( x ) \int u(x)\rm du(x) = u(x)v(x) - \int u(x)\rm dv(x) u(x)du(x)=u(x)v(x)u(x)dv(x)

二、定积分的分部积分法 6.2.2

【定理5】若函数 u(x),v(x) 在 [a, b] 上存在连续导数,则
∫ a b u ( x ) d u ( x ) = u ( x ) v ( x ) ∣ a b − ∫ a b u ( x ) d v ( x ) \int_a^b u(x)\rm du(x) = u(x)v(x)\big|_a^b - \int_a^b u(x)\rm dv(x) abu(x)du(x)=u(x)v(x)ababu(x)dv(x)

6.3 有理函数的积分法

一、有理函数的积分 6.3.1

【定理6】(多项式除法定理)任意一个假分式都可以表示成一个多项式与一个真分式之和。
m ≥ n m \ge n mn 时,设 Q m ( x ) P n ( x ) = S ( x ) + R ( x ) P n ( x ) \dfrac{Q_m(x)}{P_n(x)} = S(x) + \dfrac{R(x)}{P_n(x)} Pn(x)Qm(x)=S(x)+Pn(x)R(x),则
∫ Q m ( x ) P n ( x ) d x = ∫ S ( x ) d x + ∫ R ( x ) P n ( x ) d x \int\dfrac{Q_m(x)}{P_n(x)}\rm dx = \int S(x)\rm dx + \int\dfrac{R(x)}{P_n(x)}\rm dx Pn(x)Qm(x)dx=S(x)dx+Pn(x)R(x)dx

(一)分母为 一次重因式 的真分子的积分法

(二)分母为 不同一次因式乘积 的真分子的积分法

(三)分母为 二次多项式 (没有实根)的真分子的积分法

(四)分母为 二次重因式 的真分子的积分法

(五)分母为 一次因式与二次因式乘积 的真分子的积分法

【注1】

(1) ∫ A a x + b d x = A a ln ⁡ ∣ a x + b ∣ + C \int\dfrac{A}{ax+b}\rm dx = \dfrac{A}{a}\ln|ax+b|+C ax+bAdx=aAlnax+b+C

(2) ∫ A ( a x + b ) k d x = A a ( 1 − k ) 1 ( a x + b ) k + C \int\dfrac{A}{(ax+b)^k}\rm dx = \dfrac{A}{a(1-k)}\dfrac{1}{(ax+b)^k}+C (ax+b)kAdx=a(1k)A(ax+b)k1+C

(3) ∫ B x + c p x 2 + q x + r d x = \int\dfrac{Bx+c}{px^2+qx+r}\rm dx = px2+qx+rBx+cdx=

(4) ∫ B x + c ( p x 2 + q x + r ) k d x = \int\dfrac{Bx+c}{(px^2+qx+r)^k}\rm dx = (px2+qx+r)kBx+cdx=

【注2】

A a x + b \dfrac{A}{ax+b} ax+bA A ( a x + b ) k \dfrac{A}{(ax+b)^k} (ax+b)kA B x + c p x 2 + q x + r \dfrac{Bx+c}{px^2+qx+r} px2+qx+rBx+c B x + c ( p x 2 + q x + r ) k \dfrac{Bx+c}{(px^2+qx+r)^k} (px2+qx+r)kBx+c 称为最简分式(或部分分式)。

二、三角有理式的积分 6.3.2

【定理7】设 Q m ( x ) P n ( x ) \dfrac{Q_m(x)}{P_n(x)} Pn(x)Qm(x) 是一真分式,则其可表示成最简式之和,且表示形式唯一。

【注3】
∫ a sin ⁡ x + b cos ⁡ x p sin ⁡ x + q cos ⁡ x d x = ∫ [ A ( p sin ⁡ x + q cos ⁡ x ) p sin ⁡ x + q cos ⁡ x + B ( p sin ⁡ x + q cos ⁡ x ) ′ p sin ⁡ x + q cos ⁡ x ] d x \int\frac{a\sin x+b\cos x}{p\sin x+q\cos x}\rm dx = \int\bigg[\frac{A(p\sin x+q\cos x)}{p\sin x+q\cos x} + \frac{B(p\sin x+q\cos x)'}{p\sin x+q\cos x}\bigg]\rm dx psinx+qcosxasinx+bcosxdx=[psinx+qcosxA(psinx+qcosx)+psinx+qcosxB(psinx+qcosx)]dx

6.4 定积分应用举例

6.5 反常积分

一、无穷区间上的反常积分(无穷积分) 6.5.1

(一)无穷积分的概念

【定义1】设函数 f(x) 在定义域为 [ a , + ∞ ) [a, +∞) [a,+),且对于任意的 A ∈ ( a , + ∞ ) A \in (a, +∞) A(a,+),函数 f(x) 在 [a, A]上可积。若极限 lim ⁡ A → + ∞ ∫ a A f ( x ) d x \lim\limits_{A \to +∞}\int_a^Af(x)\rm dx A+limaAf(x)dx 存在,则称无穷积分 ∫ − ∞ a f ( x ) d x \int_{-∞}^{a}f(x)\rm dx af(x)dx ∫ a + ∞ f ( x ) d x \int_a^{+∞}f(x)\rm dx a+f(x)dx 均收敛,则称无穷积分 ∫ − ∞ + ∞ f ( x ) d x \int_{-∞}^{+∞}f(x)\rm dx +f(x)dx 收敛,且
∫ − ∞ + ∞ f ( x ) d x = ∫ − ∞ a f ( x ) d x + ∫ a + ∞ f ( x ) d x \int_{-∞}^{+∞}f(x)\rm dx = \int_{-∞}^{a}f(x)\rm dx + \int_a^{+∞}f(x)\rm dx +f(x)dx=af(x)dx+a+f(x)dx

【注1】有限区间上的函数不影响无穷积分的收敛性。
【注2】无穷积分 ∫ − ∞ + ∞ f ( x ) d x \int_{-∞}^{+∞}f(x)\rm dx +f(x)dx 的收敛性及其值得大小与实数 a 无关。

(二)无穷积分的判敛法 6.5.2

1.比较判敛法(被积函数非负的情况)

(1) 一般形式

【定理8】设函数 f(x),g(x) 在任意区间 [a, A] 上可积,则

① 当 0 ≤ f ( x ) ≤ g ( x ) ( x ∈ [ a , + ∞ ) ) 0 \le f(x) \le g(x)(x\in[a,+∞)) 0f(x)g(x)(x[a,+)),且 ∫ a + ∞ g ( x ) d x \int_a^{+∞}g(x)\rm dx a+g(x)dx 收敛时, ∫ a + ∞ f ( x ) d x \int_a^{+∞}f(x)\rm dx a+f(x)dx 收敛;

② 当 0 ≤ f ( x ) ≤ g ( x ) ( x ∈ [ a , + ∞ ) ) 0 \le f(x) \le g(x)(x\in[a,+∞)) 0f(x)g(x)(x[a,+)),且 ∫ a + ∞ g ( x ) d x \int_a^{+∞}g(x)\rm dx a+g(x)dx 发散时, ∫ a + ∞ f ( x ) d x \int_a^{+∞}f(x)\rm dx a+f(x)dx 发散;

(2) 极限形式

【定理9】设函数 f(x),g(x) 在任意区间 [a, A] 上非负可积,且 lim ⁡ x → + ∞ f ( x ) g ( x ) d x = C \lim\limits_{x \to +∞}\frac{f(x)}{g(x)}\rm dx = C x+limg(x)f(x)dx=C,则

① 当 0 < f ( x ) < + ∞ 0 < f(x) <+∞ 0<f(x)<+ 时,且 ∫ a + ∞ g ( x ) d x \int_a^{+∞}g(x)\rm dx a+g(x)dx ∫ a + ∞ f ( x ) d x \int_a^{+∞}f(x)\rm dx a+f(x)dx 敛散性一致;

② 当 C = 0 C = 0 C=0 ,且 ∫ a + ∞ g ( x ) d x \int_a^{+∞}g(x)\rm dx a+g(x)dx 收敛时, ∫ a + ∞ f ( x ) d x \int_a^{+∞}f(x)\rm dx a+f(x)dx 收敛;

③ 当 C = + ∞ C = +∞ C=+ ,且 ∫ a + ∞ g ( x ) d x \int_a^{+∞}g(x)\rm dx a+g(x)dx 发散时, ∫ a + ∞ f ( x ) d x \int_a^{+∞}f(x)\rm dx a+f(x)dx 发散;

(3) 比阶形式

【定理10】设函数f(x) 在任意区间 [a, A] (a>0) 上非负可积,且 lim ⁡ x → + ∞ x p f ( x ) = C \lim\limits_{x \to +∞}x^pf(x) = C x+limxpf(x)=C,则

① 当 0 < C < + ∞ 0 < C <+∞ 0<C<+ 时,且 p > 1 p>1 p>1 时, ∫ a + ∞ f ( x ) d x \int_a^{+∞}f(x)\rm dx a+f(x)dx 收敛;

② 当 0 < x ≤ + ∞ 0 < x \le +∞ 0<x+ ,且 p ≤ 1 p≤1 p1 时, ∫ a + ∞ f ( x ) d x \int_a^{+∞}f(x)\rm dx a+f(x)dx 发散;

2.绝对值判敛法(被积函数变号的情况)

(1) 绝对收敛和条件收敛的概念

【定义2】若 ∫ a + ∞ ∣ f ( x ) ∣ d x \int_a^{+∞}|f(x)|\rm dx a+f(x)dx 收敛,则称 ∫ a + ∞ f ( x ) d x \int_a^{+∞}f(x)\rm dx a+f(x)dx 绝对收敛。

∫ a + ∞ f ( x ) d x \int_a^{+∞}f(x)\rm dx a+f(x)dx收敛,但 ∫ a + ∞ ∣ f ( x ) ∣ d x \int_a^{+∞}|f(x)|\rm dx a+f(x)dx 发散,则称 ∫ a + ∞ f ( x ) d x \int_a^{+∞}f(x)\rm dx a+f(x)dx 条件收敛。

(2) 绝对值判敛法

【定理11】若 ∫ a + ∞ ∣ f ( x ) ∣ d x \int_a^{+∞}|f(x)|\rm dx a+f(x)dx 收敛,则 ∫ a + ∞ f ( x ) d x \int_a^{+∞}f(x)\rm dx a+f(x)dx 收敛,即绝对收敛必收敛。

二、有限区间上无界函数的反常积分(瑕积分) 6.5.3

(一)瑕积分的概念

1.瑕点的定义

【瑕点】设函数 f(x) 在区间 [a, b] 上有定义, c ∈ ( a , b ) c \in (a, b) c(a,b),若对任意的 δ>0, f(x) 在 (c-δ, c+δ) 上均无界,则称 c 为 f(x) 的瑕点。

【定义3】设 a 是函数 f(x) 的瑕点,且对任意的 a<A<b,f(x) 在 [A, b] 上可积,若极限 lim ⁡ A → a + ∫ A b f ( x ) d x \lim\limits_{A \to a^+}\int_A^bf(x)\rm dx Aa+limAbf(x)dx 存在,则称瑕积分 ∫ a b f ( x ) d x \int_a^{b}f(x)\rm dx abf(x)dx 收敛,其值为
∫ a b f ( x ) d x = lim ⁡ A → a + ∫ A b f ( x ) d x \int_a^{b}f(x)\rm dx = \lim\limits_{A \to a^+}\int_A^bf(x)\rm dx abf(x)dx=Aa+limAbf(x)dx
类似地,可以定义 b 是瑕点的瑕积分
∫ a b f ( x ) d x = lim ⁡ B → b − ∫ a B f ( x ) d x \int_a^{b}f(x)\rm dx = \lim\limits_{B \to b^-}\int_a^Bf(x)\rm dx abf(x)dx=BblimaBf(x)dx
c ∈ ( a , b ) c \in (a, b) c(a,b) 为瑕点时,只有当瑕积分 ∫ a c f ( x ) d x \int_a^{c}f(x)\rm dx acf(x)dx ∫ c b f ( x ) d x \int_c^{b}f(x)\rm dx cbf(x)dx 均收敛时,才称瑕积分 ∫ a b f ( x ) d x \int_a^{b}f(x)\rm dx abf(x)dx 收敛,且
∫ a b f ( x ) d x = ∫ a c f ( x ) d x + ∫ c b f ( x ) d x = lim ⁡ A → c − ∫ a c f ( x ) d x + lim ⁡ B → c + ∫ B b f ( x ) d x \int_a^{b}f(x)\rm dx=\int_a^{c}f(x)\rm dx+\int_c^{b}f(x)\rm dx=\lim\limits_{A \to c^-}\int_a^cf(x)\rm dx+\lim\limits_{B \to c^+}\int_B^bf(x)\rm dx abf(x)dx=acf(x)dx+cbf(x)dx=Aclimacf(x)dx+Bc+limBbf(x)dx

(二)瑕积分的判敛法 6.5.4

1.瑕积分的比较判敛法(被积函数非负的情况)

(1) 一般形式

【定理12】设 a 是函数 f(x) 与 g(x) 的瑕点,f(x) 和 g(x) 在区间 (a, b] 上非负,且 0 ≤ f ( x ) ≤ g ( x ) 0 \le f(x) \le g(x) 0f(x)g(x)。若对于任意的 A ∈ ( a , b ) A \in (a, b) A(a,b),f(x) 和 g(x) 在区间 (a, b] 上可积,则

① 当瑕积分 ∫ a b g ( x ) d x \int_a^bg(x)\rm dx abg(x)dx 收敛时,瑕积分 ∫ a b f ( x ) d x \int_a^bf(x)\rm dx abf(x)dx 收敛。

② 当瑕积分 ∫ a b f ( x ) d x \int_a^bf(x)\rm dx abf(x)dx 发散时,瑕积分 ∫ a b g ( x ) d x \int_a^bg(x)\rm dx abg(x)dx 发散。

(2) 极限形式

【定理13】设 a 是函数 f(x) 与 g(x) 的瑕点,f(x) 和 g(x) 在区间 (a, b] 上非负,且对于任意的 A ∈ ( a , b ) A \in (a, b) A(a,b),f(x) 和 g(x) 在区间 (a, b] 上可积。若 lim ⁡ x → + ∞ f ( x ) g ( x ) d x = C \lim\limits_{x \to +∞}\frac{f(x)}{g(x)}\rm dx = C x+limg(x)f(x)dx=C,则

① 当 0 < C < + ∞ 0 < C <+∞ 0<C<+ 时,瑕积分 ∫ a b g ( x ) d x \int_a^{b}g(x)\rm dx abg(x)dx ∫ a b f ( x ) d x \int_a^{b}f(x)\rm dx abf(x)dx 敛散性一致;

② 当 C = 0 C = 0 C=0 ,且 瑕积分 ∫ a b g ( x ) d x \int_a^{b}g(x)\rm dx abg(x)dx 收敛时,瑕积分 ∫ a b f ( x ) d x \int_a^{b}f(x)\rm dx abf(x)dx 收敛;

③ 当 C = + ∞ C = +∞ C=+ ,且瑕积分 ∫ a b g ( x ) d x \int_a^{b}g(x)\rm dx abg(x)dx 发散时,瑕积分 ∫ a b f ( x ) d x \int_a^{b}f(x)\rm dx abf(x)dx 发散;

(3) 比阶形式

【定理14】设 a 是函数 f(x) 的瑕点,f(x) 在区间 (a, b] 上非负,且对于任意的 A ∈ ( a , b ) A \in (a, b) A(a,b),f(x) 在区间 [A, b] 上可积。若 lim ⁡ x → a + ( x − a ) p f ( x ) = C \lim\limits_{x \to a^+}(x-a)^pf(x) = C xa+lim(xa)pf(x)=C,则

① 当 0 ≤ C < + ∞ 0 \le C <+∞ 0C<+ 时,且 p < 1 p<1 p<1 时,瑕积分 ∫ a b f ( x ) d x \int_a^{b}f(x)\rm dx abf(x)dx 收敛;

② 当 0 < C ≤ + ∞ 0 < C \le +∞ 0<C+ ,且 p ≥ 1 p\ge1 p1 时,瑕积分 ∫ a b f ( x ) d x \int_a^{b}f(x)\rm dx abf(x)dx 发散;

2.瑕积分的绝对值判敛法(被积函数变号的情况)

(1) 绝对收敛和条件收敛的概念

【定义4】设 a 是函数 f(x) 的瑕点,若 ∫ a b ∣ f ( x ) ∣ d x \int_a^{b}|f(x)|\rm dx abf(x)dx 收敛,则称 ∫ a b f ( x ) d x \int_a^{b}f(x)\rm dx abf(x)dx 绝对收敛。

∫ a b f ( x ) d x \int_a^{b}f(x)\rm dx abf(x)dx收敛,但 ∫ a b ∣ f ( x ) ∣ d x \int_a^{b}|f(x)|\rm dx abf(x)dx 发散,则称 ∫ a b f ( x ) d x \int_a^{b}f(x)\rm dx abf(x)dx 条件收敛。

(2) 绝对值判敛法

【定理15】设 a 是函数 f(x) 的瑕点,若瑕积分 ∫ a b ∣ f ( x ) ∣ d x \int_a^{b}|f(x)|\rm dx abf(x)dx 收敛,则瑕积分 ∫ a b f ( x ) d x \int_a^{b}f(x)\rm dx abf(x)dx 收敛,即绝对收敛必收敛。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值