概率论知识回顾(十九):随机变量的距

概率论知识回顾(十九)

重点:随机变量的距

知识回顾用于巩固知识和查漏补缺。知识回顾步骤:

  1. 查看知识回顾中的问题,尝试自己解答
  2. 自己解答不出来的可以查看下面的知识解答巩固知识。
  3. 对知识解答有疑问的,说明有关这一点的知识或者公式没有理解透彻或者没有记住,要重新翻看书籍。

知识回顾

  1. 什么是一维随机变量的k阶距?如何进行求解?
  2. 什么是一维随机变量的k阶中心距,如何进行求解?
  3. 什么是多维随机变量的混合距?
  4. 什么是多维随机变量的混合中心距?
  5. 什么是多维随机变量的协方差矩阵?

知识解答

  1. 什么是一维随机变量的k阶距?如何进行求解?

    • 对于随机变量 X 来说,如果对于一个正整数 k , E ( ∣ X ∣ k ) E(|X|^k) E(Xk) 存在,那么就说 μ k = E ( X k ) \mu_k=E(X^k) μk=E(Xk) 为随机变量的 k 阶距。
    • 对于 μ 1 \mu_1 μ1 我们并不陌生,它就是之前我们讨论的期望。同时对于 μ 2 \mu_2 μ2 我们应该也不陌生,在求解方差的时候,即 D ( X ) = E ( X 2 ) − [ E ( X ) ] 2 = μ 2 − μ 1 2 D(X) = E(X^2) - [E(X)]^2 = \mu_2 - \mu_1^2 D(X)=E(X2)[E(X)]2=μ2μ12
    • 求解 μ k = E ( X k ) = { ∑ i = 1 + ∞ x i k p i X 为 离 散 随 机 变 量 ∫ − ∞ + ∞ x k f ( x ) d x X 为 连 续 随 机 变 量 ∫ − ∞ + ∞ x k d F ( x ) 通 用 情 况 \mu_k = E(X^k) = \begin{cases} \sum_{i=1}^{+\infty}x_i^kp_i & X为离散随机变量 \\ \int_{-\infty}^{+\infty}x^kf(x)dx & X为连续随机变量 \\ \int_{-\infty}^{+\infty}x^kdF(x) & 通用情况 \end{cases} μk=E(Xk)=i=1+xikpi+xkf(x)dx+xkdF(x)XX
  2. 什么是一维随机变量的k阶中心距,如何进行求解?k阶距和k阶中心距有什么关系?

    • 对随机变量 X 来说,如果对于一个正整数 k, E ( ∣ X − E ( X ) ∣ k ) E(|X - E(X)|^k) E(XE(X)k) 存在,那么就说 C k = E [ X − E ( X ) ] k C_k = E[X-E(X)]^k Ck=E[XE(X)]k 为X的k阶中心距。

    • 当然 C 2 C_2 C2 也就是我们说的方差。

    • 它的求解方式和k阶距的求解方式类似,即把 x k x^k xk 替换成 ( x − E X ) k (x-EX)^k (xEX)k 即可

    • 对于k阶距来说,这里的 EX=0, 因此也称为k阶原点距。

    • 另外:任何的 k 阶中心距都可以用 k 阶距来进行表示。

      C k = E ( X − μ 1 ) k = E [ ∑ i = 0 k C k i X i ( − μ 1 ) k − i ] = ∑ i = 0 k C k i ( − μ 1 ) k − i E ( X i ) = ∑ i = 0 k C k i ( − μ 1 ) k − i μ i \begin{aligned}C_k &= E(X-\mu_1)^k = E[\sum_{i=0}^kC_k^iX^i(-\mu_1)^{k-i}] \\&=\sum_{i=0}^{k}C_k^i(-\mu_1)^{k-i}E(X^i) = \sum_{i=0}^{k}C_k^i(-\mu_1)^{k-i}\mu_i\end{aligned} Ck=E(Xμ1)k=E[i=0kCkiXi(μ1)ki]=i=0kCki(μ1)kiE(Xi)=i=0kCki(μ1)kiμi

  3. 什么是多维随机变量的混合距?

    • 对于随机变量X,Y,称 E ( X k Y l ) E(X^kY^l) E(XkYl) 为 X 和 Y 的 k+l阶 混合距。
    • 同理,对于n个正整数 k 1 , k 2 , . . . , k n k_1, k_2, ..., k_n k1,k2,...,kn, 若 E ( ∣ X 1 k 1 X 2 k 2 ⋯ X n k n ∣ ) E(|X_1^{k_1}X_2^{k_2}\cdots X_n^{k_n}|) E(X1k1X2k2Xnkn) 存在,则称 E ( X 1 k 1 X 2 k 2 ⋯ X n k n ) E(X_1^{k_1}X_2^{k_2}\cdots X_n^{k_n}) E(X1k1X2k2Xnkn) X = ( X 1 , X 2 , . . . , X n ) X = (X_1, X_2, ..., X_n) X=(X1,X2,...,Xn) k 1 + k 2 + ⋯ + k n k_1+k_2+\cdots+k_n k1+k2++kn 阶混合距。
  4. 什么是多维随机变量的混合中心距?

    • 对于随机变量X,Y,称 E ( ( X − E X ) k ( Y − E Y ) l ) E((X-EX)^k(Y-EY)^l) E((XEX)k(YEY)l) 为 X 和 Y 的 k+l阶 混合中心距。
    • 可以看到,当 k=l=1 的时候,就是X和Y的协方差。
    • 同理,对于n个正整数 k 1 , k 2 , . . . , k n k_1, k_2, ..., k_n k1,k2,...,kn, 若 E ( ∣ ( X 1 − E X 1 ) k 1 ( X 2 − E X 2 ) k 2 ⋯ ( X n − E X n ) k n ∣ ) E(|(X_1-EX_1)^{k_1}(X_2-EX_2)^{k_2}\cdots (X_n-EX_n)^{k_n}|) E((X1EX1)k1(X2EX2)k2(XnEXn)kn) 存在,则称 E ( ( X 1 − E X 1 ) k 1 ( X 2 − E X 2 ) k 2 ⋯ ( X n − E X n ) k n ) E((X_1-EX_1)^{k_1}(X_2-EX_2)^{k_2}\cdots (X_n-EX_n)^{k_n}) E((X1EX1)k1(X2EX2)k2(XnEXn)kn) X = ( X 1 , X 2 , . . . , X n ) X = (X_1, X_2, ..., X_n) X=(X1,X2,...,Xn) k 1 + k 2 + ⋯ + k n k_1+k_2+\cdots+k_n k1+k2++kn 阶混合中心距。
  5. 什么是多维随机变量的协方差矩阵?

    • 对于多维随机变量 X = ( X 1 , X 2 , . . . , X n ) X = (X_1, X_2, ...,X_n) X=(X1,X2,...,Xn)来说, 它的期望是 E X = ( E X 1 , E X 2 , . . . , E X n ) EX = (EX_1, EX_2,...,EX_n) EX=(EX1,EX2,...,EXn)
    • 同理,将其看做为一个n维的向量,它的方差的求法也和普通一维随机变量方差求法有一些细微差别,即 D ( X ) = E ( ( X − E X ) T ( X − E X ) ) = [ X 1 − E X 1 X 2 − E X 2 ⋮ X n − E X n ] ⋅ [ X 1 − E X 1 X 2 − E X 2 ⋯ X n − E X n ] = [ ( X 1 − E X 1 ) ( X 1 − E X 1 ) ( X 1 − E X 1 ) ( X 2 − E X 2 ) ⋯ ( X 1 − E X 1 ) ( X n − E X n ) ( X 2 − E X 2 ) ( X 1 − E X 1 ) ( X 2 − E X 2 ) ( X 2 − E X 2 ) ⋯ ( X 2 − E X 2 ) ( X n − E X n ) ⋯ ⋯ ⋯ ⋯ ( X n − E X n ) ( X 1 − E X 1 ) ( X n − E X n ) ( X 2 − E X 2 ) ⋯ ( X n − E X n ) ( X n − E X n ) ] = [ D ( X 1 ) C o v ( X 1 , X 2 ) ⋯ C o v ( X 1 , X n ) C o v ( X 2 , X 1 ) D ( X 2 ) ⋯ C o v ( X 2 , X n ) ⋯ ⋯ ⋯ ⋯ C o v ( X n , X 1 ) C o v ( X n , X 2 ) ⋯ D ( X n ) ] = [ b 11 b 12 ⋯ b 1 n b 21 b 22 ⋯ b 2 n ⋯ ⋯ ⋯ ⋯ b n 1 b n 2 ⋯ b n n ] \begin{aligned}D(X) = E((X-EX)^T(X-EX)) &= \begin{bmatrix}X_1-EX_1 \\ X_2 - EX_2 \\ \vdots \\ X_n-EX_n \end{bmatrix} · \begin{bmatrix} X_1-EX_1 & X_2-EX_2 & \cdots & X_n-EX_n \end{bmatrix} \\&= \begin{bmatrix} (X_1-EX_1)(X_1-EX_1) & (X_1-EX_1)(X_2-EX_2) & \cdots & (X_1-EX_1)(X_n-EX_n) \\ (X_2-EX_2)(X_1-EX_1) & (X_2-EX_2)(X_2-EX_2) & \cdots & (X_2-EX_2)(X_n-EX_n) \\ \cdots & \cdots & \cdots & \cdots \\ (X_n-EX_n)(X_1-EX_1) & (X_n-EX_n)(X_2-EX_2) & \cdots & (X_n-EX_n)(X_n-EX_n) \end{bmatrix} \\&=\begin{bmatrix} D(X_1) & Cov(X_1,X_2) & \cdots & Cov(X_1,X_n) \\ Cov(X_2,X_1) & D(X_2) & \cdots & Cov(X_2,X_n) \\ \cdots & \cdots & \cdots & \cdots \\ Cov(X_n,X_1) & Cov(X_n,X_2) & \cdots & D(X_n) \end{bmatrix} = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{bmatrix} \end{aligned} D(X)=E((XEX)T(XEX))=X1EX1X2EX2XnEXn[X1EX1X2EX2XnEXn]=(X1EX1)(X1EX1)(X2EX2)(X1EX1)(XnEXn)(X1EX1)(X1EX1)(X2EX2)(X2EX2)(X2EX2)(XnEXn)(X2EX2)(X1EX1)(XnEXn)(X2EX2)(XnEXn)(XnEXn)(XnEXn)=D(X1)Cov(X2,X1)Cov(Xn,X1)Cov(X1,X2)D(X2)Cov(Xn,X2)Cov(X1,Xn)Cov(X2,Xn)D(Xn)=b11b21bn1b12b22bn2b1nb2nbnn
    • 上面推导出的矩阵即称为 X = ( X 1 , X 2 , . . . , X n ) X = (X_1, X_2, ..., X_n) X=(X1,X2,...,Xn) 的协方差矩阵。
    • 对于上面的矩阵可以知道
      • b i i = D ( X i ) b_{ii} = D(X_i) bii=D(Xi)
      • b i j = b j i b_{ij} = b_{ji} bij=bji
      • b i j 2 ≤ b i i b j j b_{ij}^2 \le b_{ii}b_{jj} bij2biibjj
      • 矩阵是非负定的,对任意实数 t 1 , t 2 , . . . , t n t_1, t_2, ..., t_n t1,t2,...,tn ∑ i = 1 n ∑ j = 1 n b i j t i t j ≥ 0 \sum_{i=1}^n\sum_{j=1}^nb_{ij}t_it_j \ge 0 i=1nj=1nbijtitj0 t B t T ≥ 0 tBt^T \ge 0 tBtT0
  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值