统计知识基础(一)几种重要分布

正态分布

用Y表示表示随机变量,若其服从均值为 μ \mu μ,方差为 δ 2 \delta^2 δ2的分布规律,则称其为正态分布
Y ∼ N ( μ , δ 2 ) Y\sim N\left(\mu,\delta^2\right) YN(μ,δ2)
经常用在自然和社会科学来代表一组不明的随机变量,正态分布的数学期望为 μ \mu μ,决定了其分布的位置,其方差 δ 2 \delta^2 δ2或标准差 δ \delta δ决定了分布的幅度。
正态分布的概率密度函数为
f ( x ) = 1 δ 2 π e − ( x − μ ) 2 2 δ 2 f(x)=\frac{1}{\delta\sqrt{2\pi}}e^-\frac{\left(x-\mu\right)^2}{2\delta^2} f(x)=δ2π 1e2δ2(xμ)2

标准正态分布

标准正态分布是当 μ = 0 \mu=0 μ=0 δ 2 = 1 \delta^2=1 δ2=1时的正态分布,即 Y ∼ N ( 0 , 1 ) Y\sim N\left(0,1\right) YN(0,1)
在这里插入图片描述

 正态分布 ( μ , δ 2 ) \left(\mu,\delta^2\right) (μ,δ2)函数曲线下的面积:
 68.27%的面积在平均值左右的一个标准差范围内
 95.45%的面积在平均值左右两个标准差2σ的范围内
 99.73%的面积在平均值左右三个标准差3σ的范围内
 99.99%的面积在平均值左右四个标准差4σ的范围内

根据正态分布衍生的三大分布

1. χ 2 \chi^2 χ2 分布

在很久以前,通过看其他资料或者其他形式了解的时候,总是有点半懵的状态,根绝略懂又又些不太懂(可能我比较笨一点),都是因为它们表示得太抽象,难以理解。其实卡方分布可以简单的理解为一句话:n个服从标准正态分布的随机变量的平方和构成一新的随机变量
设 随机变量Y1,Y2,…Yn相互独立, 都服从标准正态分布N(0,1), 则称随机变量 Y 2 = Y 1 2 + Y 2 2 + . . . . . . + Y n 2 Y^2=Y^{2}_{1}+Y^{2}_{2}+......+Y^{2}_{n} Y2=Y12+Y22+......+Yn2所服从的分布为自由度为 n 的 Y 2 Y^{2} Y2分布。其中n称为自由度(样本中独立或能自由变化的自变量的个数)当总体 Y ∼ N ( μ , δ 2 ) Y\sim N\left(\mu,\delta^2\right) YN(μ,δ2),从中抽取容量为 n n n的样本时,则
∑ i = 1 n ( X i − X ˉ ) 2 δ 2 ∼ χ 2 ( n − 1 ) \frac{\sum\limits_{i=1}^{n}{\left(X_i-\bar{X}\right)^2}}{\delta^2} \sim \chi^2 \left(n-1\right) δ2i=1n(XiXˉ)2χ2(n1)
卡方分布的密度函数为
f ( x ) = { 1 2 n / 2 Γ ( n / 2 ) e − x 2 x n 2 − 1 x>0 0 x ≤ 0 f(x)= \begin{cases} \frac{1}{2^{n/2}\Gamma\left(n/2\right)}e^{-\frac{x}{2}}x^{\frac{n}{2}-1} & \text{x>0}\\\\ 0& \text{x$\leq$0} \end{cases} f(x)=2n/2Γ(n/2)1e2xx2n10x>0x0

卡方分布有以下特点:
1.分布的变量值始终为正;
2.随着参数 n 的增大,分布趋近于正态分布;
3.期望为, E ( χ 2 ) = n E(\chi^2)=n E(χ2)=n,方差为: D ( χ 2 ) = 2 n D(\chi^2)=2n D(χ2)=2n( n n n为自由度);
4.可加性,若存在 A ∼ χ 2 ( n 1 ) A\sim\chi^2(n_1) Aχ2(n1) B ∼ χ 2 ( n 2 ) B\sim\chi^2(n_2) Bχ2(n2)这样的两个卡方分布,则A+B也服从自由度为 n 1 + n 2 n_1+n_2 n1+n2的卡方分布。

2. t t t 分布

假设有两组随机变量:
随机变量 X X X服从标准正态分布 N ( 0 , 1 ) N(0,1) N(0,1)
随机变量 Y Y Y服从自由度为 n n n的卡方分布 χ 2 ( n ) \chi^2(n) χ2(n)
X X X Y Y Y独立,则由服从不同分布的两组随机变量衍生成新的随机变量 t t t,且满足一下条件
t = X Y / N t=\frac{X}{\sqrt{Y/N}} t=Y/N X
则称 t t t为服从自由度为 n n n t t t分布或学生氏分布。其密度函数为:
f ( x ) = Γ ( n + 1 2 ) n π Γ ( n / 2 ) ( 1 + x 2 n ) − n + 1 2 f(x)=\frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma(n/2)}\left(1+\frac{x^2}{n}\right)^{-\frac{n+1}{2}} f(x)=nπ Γ(n/2)Γ(2n+1)(1+nx2)2n+1

也是随着自由度逐渐增大,t分布逐渐接近标准正态分布。

3. F F F 分布

假设有两组随机变量 U U U V V V,且 U ∼ χ 2 ( n 1 ) U\sim\chi^2(n_1) Uχ2(n1) V ∼ χ 2 ( n 2 ) V\sim\chi^2(n_2) Vχ2(n2) U U U V V V相互独立,当
F = U / n 1 V / n 2 F=\frac{U/n_1}{V/n_2} F=V/n2U/n1
则称 F F F为服从自由度为 n 1 n_1 n1 n 2 n_2 n2 F F F分布,记为 F ∼ F ( n 1 , n 2 ) F\sim F(n_1,n_2) FF(n1,n2)
其密度函数为:
f n 1 , n 2 ( x ) = { Γ ( n 1 + n 2 2 ) Γ ( n 1 2 ) Γ ( n 2 2 ) n 1 n 1 2 n 2 n 2 2 x n 1 2 − 1 ( n 2 + n 1 x ) − n 1 + n 2 2 x>0 0 x ≤ 0 f_{n_1,n_2}(x)= \begin{cases} \frac{\Gamma\left(\frac{n_1+n_2}{2}\right)}{\Gamma\left(\frac{n_1}{2}\right)\Gamma\left(\frac{n_2}{2}\right)}n_1^{\frac{n_1}{2}}n_2\frac{n_2}{2}x^{\frac{n_1}{2}-1}(n_2+n_1x)^{-\frac{n_1+n_2}{2}} & \text{x>0}\\\\ 0& \text{x$\leq$0} \end{cases} fn1,n2(x)=Γ(2n1)Γ(2n2)Γ(2n1+n2)n12n1n22n2x2n11(n2+n1x)2n1+n20x>0x0
图示

以上就是统计学中几种比较常见、重要的分布的简单概述,讲到的都是比较浅层的东西,没人深入的透析,而且语言比较通俗。
下一篇总结一下点估计,区间估计和中心极限定理。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值