UFLDL教程Exercise答案(8):Convolution and Pooling

教程地址:http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial

Exercise地址:http://deeplearning.stanford.edu/wiki/index.php/Exercise:Convolution_and_Pooling

代码

Step 1: Load learned features ——cnnExercise.m

% --------------------------- YOUR CODE HERE --------------------------
% Train the sparse autoencoder and fill the following variables with 
% the optimal parameters:

optTheta =  zeros(2*hiddenSize*visibleSize+hiddenSize+visibleSize, 1);
ZCAWhite =  zeros(visibleSize, visibleSize);
meanPatch = zeros(visibleSize, 1);

load STL10Features.mat;

% --------------------------------------------------------------------

Step 2: Implement and test convolution and pooling 

Step 2a: Implement convolution——cnnConvolve.m

function convolvedFeatures = cnnConvolve(patchDim, numFeatures, images, W, b, ZCAWhite, meanPatch)
%cnnConvolve Returns the convolution of the features given by W and b with
%the given images
%
% Parameters:
%  patchDim - patch (feature) dimension
%  numFeatures - number of features特征数 hiddenSize隐藏层单元数
%  images - large images to convolve with, matrix in the form
%           images(r, c, channel, image number)  需要被卷积的大尺寸图像
%  W, b - W, b for features from the spa
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值