模型预测结果校准——Isotonic regression

模型预测结果校准——Isotonic regression  

方法简介:

Isotonic Regression: the method used by Zadrozny and Elkan (2002; 2001) to calibrate predictions from boosted naive bayes, SVM, and decision tree models.[1]

Zadrozny and Elkan (2002; 2001) successfully used a more general

method based on Isotonic Regression (Robertson et al.,1988) to calibrate predictions from SVMs, Naive Bayes, boosted Naive Bayes, and decision trees. This method is more general in that the only restriction is that the mapping function be isotonic (monotonically increasing).[1]

Isotonic regression(保序回归) 是一种非参数化方法(The non-parametric approach);

假设模型的预测结果记为fi,真实目标记为yi,那么Isotonic Regression的基本假设为:

其中m是isotonic(单调递增)的函数。

给定数据集,可以通过下式求解m:

保序回归(isotonic regression)是一种非参数回归方法,它的目标是拟合一个单调递增的函数来拟合数据。在Java中,我们可以使用Apache Spark的ML库来实现保序回归。 以下是一个简单的示例代码,它使用Spark DataFrame和ML库来实现保序回归: ```java import org.apache.spark.ml.regression.IsotonicRegression; import org.apache.spark.ml.regression.IsotonicRegressionModel; import org.apache.spark.sql.Dataset; import org.apache.spark.sql.Row; import org.apache.spark.sql.SparkSession; public class IsotonicRegressionExample { public static void main(String[] args) { // 创建SparkSession SparkSession spark = SparkSession.builder() .appName("IsotonicRegressionExample") .getOrCreate(); // 加载数据集 Dataset<Row> data = spark.read() .format("libsvm") .load("data/sample_isotonic_regression_libsvm_data.txt"); // 分割数据集为训练集和测试集 Dataset<Row>[] splits = data.randomSplit(new double[]{0.7, 0.3}); Dataset<Row> training = splits[0]; Dataset<Row> test = splits[1]; // 创建保序回归模型 IsotonicRegression ir = new IsotonicRegression(); // 拟合训练数据 IsotonicRegressionModel model = ir.fit(training); // 打印保序回归模型的系数和截距 System.out.println("Coefficients: " + model.boundaries() + "\nIntercept: " + model.predictions().toArray()[0].getAs("prediction")); // 在测试数据上进行预测 Dataset<Row> predictions = model.transform(test); // 打印预测结果 predictions.show(); // 停止SparkSession spark.stop(); } } ``` 在这个示例中,我们首先创建了一个SparkSession,并加载了一个样本数据集。然后,我们将数据集随机分成训练集和测试集。接下来,我们使用IsotonicRegression类创建了一个保序回归模型,并对训练数据进行拟合。最后,我们使用模型对测试数据进行预测,并打印出预测结果。 需要注意的是,这只是一个简单的示例代码,实际应用中可能需要更复杂的数据预处理和调参过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值