模型预测结果校准——Isotonic regression

模型预测结果校准——Isotonic regression  

方法简介:

Isotonic Regression: the method used by Zadrozny and Elkan (2002; 2001) to calibrate predictions from boosted naive bayes, SVM, and decision tree models.[1]

Zadrozny and Elkan (2002; 2001) successfully used a more general

method based on Isotonic Regression (Robertson et al.,1988) to calibrate predictions from SVMs, Naive Bayes, boosted Naive Bayes, and decision trees. This method is more general in that the only restriction is that the mapping function be isotonic (monotonically increasing).[1]

Isotonic regression(保序回归) 是一种非参数化方法(The non-parametric approach);

假设模型的预测结果记为fi,真实目标记为yi,那么Isotonic Regression的基本假设为:

其中m是isotonic(单调递增)的函数。

给定数据集,可以通过下式求解m:

### 元校准模型在机器学习中的校准优化方法与应用 元校准模型(Meta-calibration Model)是一种用于提升机器学习模型概率预测准确性的技术。它通过对基础模型的输出进行再校准,以确保预测概率更接近真实概率分布,从而提高模型的可靠性与实用性。 在机器学习中,概率校准是优化模型预测能力的重要手段之一。等距回归(Isotonic Regression)是一种非参数校准方法,它通过对模型输出进行单调非降的回归来校准概率,适用于任何分类器,尤其在预测概率分布不规则的情况下表现优异[^2]。这种方法无需对数据分布做任何假设,因此在实际应用中具有较高的灵活性和适应性。 此外,遗传算法(GA, Genetic Algorithm)也可以用于校准机器学习模型的参数。遗传算法是一种基于自然选择和遗传机制的优化算法,通过逐代演化候选解来寻找问题的最优解。在模型校准任务中,GA 能够优化模型参数,使模型输出与观测数据尽可能接近,从而提升模型的精度和稳定性[^3]。 在回归任务中,conformal-tights 是一种新兴的校准技术,它为机器学习模型提供了具有可靠性保证的预测区间。该方法基于 Python 实现,能够为 scikit-learn 回归器和 Darts 时间序列预测库添加 conformal 校准的概率预测功能,使得模型不仅能够输出预测值,还能提供预测的置信区间,从而增强决策的可靠性[^4]。 结合上述方法,元校准模型可以在多个层面上提升机器学习模型的表现。例如,在分类任务中,使用等距回归进行概率校准可以提高预测概率的准确性;在回归任务中,利用 conformal-tights 技术可以为预测结果提供可靠的置信区间;而在参数优化方面,遗传算法可以作为强大的工具来调整模型参数,实现更优的校准效果。 以下是一个使用等距回归进行概率校准的 Python 示例代码: ```python from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.isotonic import IsotonicRegression from sklearn.metrics import brier_score_loss # 生成模拟数据 X, y = make_classification(n_samples=1000, n_features=20, random_state=42) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 训练基础模型 base_model = LogisticRegression() base_model.fit(X_train, y_train) probs = base_model.predict_proba(X_test)[:, 1] # 等距回归校准 ir = IsotonicRegression(out_of_bounds='clip') calibrated_probs = ir.fit_transform(probs, y_test) # 评估校准前后效果 brier_score_before = brier_score_loss(y_test, probs) brier_score_after = brier_score_loss(y_test, calibrated_probs) print(f"Brier Score Before Calibration: {brier_score_before:.4f}") print(f"Brier Score After Calibration: {brier_score_after:.4f}") ``` 该代码演示了如何使用等距回归对逻辑回归模型的输出进行概率校准,并通过 Brier Score 评估校准前后的模型性能。 元校准模型在金融预测、医疗诊断、推荐系统等领域具有广泛的应用前景。它不仅能够提升模型预测准确性,还能增强模型的解释性和可信度,从而为实际业务场景提供更可靠的决策支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值