融合特征的SSD:对小目标的快速检测 翻译

小目标因为其分辨率和信息的限制,对其进行检测是比较有挑战性的任务。当下很多对小目标的检测方法都是以牺牲精度作为代价的。作者在SSD中进行了多层特征的融合以引入context信息,特征融合的细节上,作者设计了两种模型,分别是:concatenation module 和 element-sum module,这两种模型的不同点在于引入context信息方式的差异。实验结果显示这两种模型的检测精度都超过了SSD,检测的速度也比DSSD更快。

 

当下的许多已经被证明相当有效的方法都是通过采用引入上下文信息的方式来改进对小目标的检测。如图一所示,在不将海考虑在内的时候,帆船的识别是非常困难的。当下的很多网络R-CNN系列,使用区域提名的方式,检测速率太低,而DSSD网络将Residual-101作为基础网络来提高小目标的检测精度,但是牺牲了检测的速率。

由于上下文信息的使用会引入噪声。细节上,concatenation module使用了1x1的卷积层来学习目标信息的融合权重和Contextual信息,它能够减少无用的背景的干扰。element-sum module手动设置相同的权重,并且强制融合了多层级的特征。它能够增强有用的context信息的有效性。实验证明,两种module不但精度比SSD更高,小目标类的精度也高出了2-3个百分点。

由于浅层适用于检测小目标,深层特征图则检测大目标,为了检测速度,作者不考虑融合高层的特征。为了考虑融合哪些层的特征,将特征层的有效的receptive fields作为指标。比如在最靠近人的小船的检测中,图层con4-3是最合适的,而conv5-3和fc6则有跟大的effective receptive fields。

为了在缺乏语义信息的conv4-3中引入contextual信息,作者使用了这两总module。

如图四所示为concatenation fusion module,在conv5-3之后跟一个降卷积层以便于将卷积层5-3的特征图size变得和conv-4-3一样,这个降卷积层通过双线性上采样bilinear upsample初始化。在conv4-3和5-3添加3X3大小的卷积层以便于更好的提取特征用于融合。在将它们沿着通道轴进行融合之前,分别使用不同尺度的批量归一化BN层,如10,20.最后用1x1的卷积层生成最终的融合特征图用于降维和特征重结合。

第二种方法和第一种在融合阶段有所不同,这两种包含不同层次特征的特征图以相同的权重进行点对点的整合,实际操作中,由于之前添加的卷积层以便于提取特征进行更好的融合,导致这个操作效果很好,这也是收到了DSSD的启发。

第一种方法使用1x1卷积层学习到的权重来融合特征,第二种方法则手动设置权重,由于这样的差异,第一种方法能消除无用的背景噪声的影响,而第二种方法能加大语义信息的重要性。

总结:

作者提出的方法对小目标具有较高的检测精度和检测速率,于现在最好的对小目标检测的方法相比,作者提出的方法在实现相当的精度的同时提高了检测的速度。作者在不同方面展示了这两种方法的优势,由于对于小目标来说,context信息并不总是有用的,因此下一步的的研究工作是控制信息的传送。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值