集合、关系的性质、交换群与分配格的相关证明题

离散证明题## 标题
1.设A,B,C是非空有限集,证明:A-(B∪C)=(A-B)∩(A-C).
proof:
①设x∈A-(B∪C),则有x∈A 且 x∉(B∪C)
即x∈A且x∉B and x∈A且x∉C
也即x∈(A-B) and x∈(A-C)
所以x∈(A-B)∩(A-C)
也就是说A-(B∪C)⊆(A-B)∩(A-C)
②设x∈(A-B)∩(A-C),则有x∈(A-B) 且 x∈(A-C)
即x∈A且x∉B and x∈A且x∉C
也即x∈A and x∉(B∪C)
所以x∈A-(B∪C)
也就是说(A-B)∩(A-C)⊆A-(B∪C)
综上所述:A-(B∪C)=(A-B)∩(A-C)
2.给定集合A的覆盖{A₁,A₂,A₃,…Aₘ},证明由它确定的关系R=A₁×A₁∪A₂×A₂∪…∪Aₘ×Aₘ是相容关系.(即满足自反和对称的二元关系)
proof:
①对于∀x∈A,显然∃n使得x∈Aₙ,所以(x,x)∈R,故R是自反
②若x,y∈A,且(x,y)∈R,则必∃k使得(x,y)∈Aₖ×Aₖ,所以(y,x)∈Aₖ×Aₖ,
即(y,x)∈R,故R是对称
综上所述:R是A上的相容关系

  • 16
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
循环群的自同构群是交换群的证明如下: 首先,我们可以证明一个循环群的自同构群只能是一个循环群或者一个交换群。 假设 G 是一个循环群,生成元为 a。 对于任何一个自同构 f,由于 a 生成 G,所以 f(a) 一定也是 G 的生成元。也就是说,f(a) = a^n(n 为一个整数)。 又因为 f 是一个自同构,所以 f(a^k) = (f(a))^k = (a^n)^k = a^{nk}。 因此,f(a^k) = a^{nk},也就是说,f 通过对 G 中元素 a 的群运算操作得到了一个新的循环群,它已经被确定为由 a^n 生成。这意味着,G 和 f(G) 有相同的群结构。 所以,如果 G 是一个循环群,那么其自同构群必须由形如 f(a) = a^n 的自同构构成。这些自同构的组合可以用一个整数 n 来表示,因此自同构群是一个循环群。 现在考虑一个自同构群 M,即所有从 G 到 G 自身的群同构组成的集合。对于 M 中的任何两个元素 f 和 g,我们定义它们的乘积 f*g 为将 f 和 g 执行群运算之后得到的函数(即 f(g(x)))。 由于这个群的元素是群同构,因此它们可以像普通群一样进行乘法操作。如果 M 中的所有元素都是交换的,那么这个群就是交换群。 现在我们需要证明,循环群的自同构群只能是一个循环群或者一个交换群。 考虑循环群 G 和其自同构群 M。由上面的分析,M 中的所有元素都可以表示为 f(a) = a^n 的形式。因此, f*g(a) = f(g(a)) = f(a^m) = (a^m)^n = a^{mn} g*f(a) = g(f(a)) = g(a^n) = (a^n)^m = a^{nm} 因此,f*g(a) = g*f(a) = a^{mn},这意味着 f*g 和 g*f 也是 a^n 的某个倍数。因此,M 中的所有元素都是交换的,所以 M 是一个交换群。 因此,我们证明了循环群的自同构群只能是一个循环群或者一个交换群。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值