An Embarrassingly Easy but Strong Baseline for Nested Named Entity Recognition

原文链接:

https://aclanthology.org/2023.acl-short.123.pdf

ACL 2023

介绍

        问题

        基于span来解决嵌套ner任务的范式,大多都是先对span进行枚举,然后对每个span进行分类,实际就是得到一个分数矩阵,矩阵中每个元素表示一个span(比如矩阵中的n行m列,对应着span(token_n, token_m))。作者认为这种方法忽略了span与sapn之间的空间信息。

        IDEA 

        在矩阵中,每个span与其周围的span在原句中都是比较接近的,存在一定的空间语义信息。因此作者提出使用CNN来对span之间的空间信息进行建模。

方法

         整体来说,首先对span进行枚举,然后通过Biaffine decoder得到一个三维的特征矩阵,在此基础上使用CNN来进行卷积,在span与span之间进行交互,丰富span的表征,最后对其进行分类。整体结构如下图所示:

Span-based Representation

         使用一个预训练模型(比如BERT)来得到输入句子的word embedding,对于分词后的token,使用max-pooling来得到这个word的词嵌入:

        然后使用一个多头的Biaffine decoder来得到每个span的分数矩阵R:

CNN on Feature Matrix

         使用CNN来对span与其周围的span之间的交互进行建模,

        这里由于句子中的token数量不同,导致分数矩阵R的大小会不同,为了进行批量计算,在矩阵中使用0来进行padding。

Output

        使用一个mlp来得到相应的预测对数:

        模型的损失函数是一个分类二值交叉熵:

实验

         在ACE2004和ACE2005这两个数据集上进行实验,结果如下所示:

         在genia数据集上进行了实验(预训练模型使用BioBERT-base),结果如下图所示:

        为了研究为什么CNN有利于嵌套ner任务,作者将实体分为两类:嵌套实体(nest ner)和非嵌套实体(flat ner)。作者设计了 4 个指标 NEPR(flat entity precision)、NERE(flat entity recall)、FEPR(nested entity precision) 和 FERE(nested entity recall): 

结论

        论文想法很简单,使用了卷积来对不同的span进行交互,使其能够学习到周围span的信息,但是其实从实验结果来看,加了CNN的效果并没有很大的提升。但将卷积利用到NER任务中,也浅算一个创新点吧,或许可以考虑不止在span与span之间进行卷积。 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
零样本学习是一种重要的机器学习方法,用于处理那些没有被训练过的类别。一种尴尬地简单的零样本学习方法是使用属性向量来表示类别,而不是直接从训练数据中学习类别之间的关系。属性向量是一个描述类别特征的向量,可以用来衡量一个物体或概念的属性。通过使用属性向量,我们可以将类别表示为在属性空间中的点,进而进行零样本学习。这种方法的好处是可以在没有训练数据的情况下,根据已知的属性向量来推断新类别的特征。 具体而言,我们可以使用属性向量来表示图像的类别。例如,在处理动物分类问题时,我们可以用一个包含了“有四条腿”、“毛茸茸”等属性的向量来描述不同动物的特征。然后,我们可以将这些属性向量应用到零样本学习中,通过计算新图像与不同类别属性向量之间的相似度来判断图像所属的类别。这种方法的优势在于不需要额外的训练数据,只需从属性向量中提取特征并进行简单的计算即可完成零样本学习。 尽管这种方法可能显得太过简单,但它却可以在一定程度上解决零样本学习的问题。当我们面临没有训练数据的新类别时,使用属性向量来进行零样本学习是一种简单而有效的方法。当然,这种方法也有一些局限性,比如需要准确的属性向量和属性空间的定义,但它无疑为零样本学习提供了一种简单而实用的解决方案。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值