CV论文研读笔记

本文深入探讨了卷积神经网络(CNN)的基础知识,包括ReLU激活函数、Dropout、最大池化和LRN层的作用。此外,文章详细介绍了目标检测中的关键组件,如ROI Pooling、ROI Align、Deformable Convolution和Anchor Boxes。通过对Region Proposal by Guided Anchoring、Feature Selective Anchor-Free Module等论文的研读,揭示了如何改善目标检测的性能。同时,论文还讨论了语义分割技术,包括FCN、DeconvNet和RefineNet等网络结构,以及它们在医学图像分割等领域的应用。
摘要由CSDN通过智能技术生成

基础

  1. ReLU作为CNN的激活函数,其效果在较深的网络超过了Sigmoid,成功解决了Sigmoid在网络较深时的梯度弥散问题。
  2. 训练时使用Dropout随机忽略一部分神经元,以避免模型过拟合。
  3. 在CNN中使用最大池化平均池化具有模糊化效果。
  4. 在CNN中让池化重叠。让步长比池化核的尺寸小,这样池化层的输出之间会有重叠和覆盖,提升了特征的丰富性。
  5. 增加LRN层,对局部神经元的活动创建竞争机制,使得其中响应比较大的值变得相对更大,并抑制其他反馈较小的神经元,增强了模型的泛化能力。(后被认为基本没用)
  6. 对于给定的感受野(与输出有关的输入图片的局部大小),采用堆积的小卷积核是优于采用大的卷积核,因为多层非线性层可以增加网络深度来保证学习更复杂的模式,而且代价还比较小(参数更少)。在很多网络中,都使用了3个3x3卷积核来代替7x7卷积核,使用了2个3x3卷积核来代替5x5卷积核。
  7. CNN由于固定的几何结构,导致其对几何形变的建模受到限制。为了加强CNN对形变的建模能力,文献”deformable convolution network的”提出了deformable convolutiondeformable RoI pooling两种网络结构单元。deformable convolution 和 deformable RoI pooling都是基于通过学习一个额外的偏移(offset),使卷积核对输入feature map的采样的产生偏移,集中于感兴趣的目标区域。可以将deformable convolution , deformable RoI pooling加入现有的CNN中,并可进行端到端训练。
  8. ROIs Pooling顾名思义,是Pooling层的一种,而且是针对RoIs的Pooling,他的特点是输入特征图尺寸不固定,但是输出特征图尺寸固定。因为可能输入的feature map需要先投影出region proposal(物体检测中),而region proposal的大小是不固定的,但是我们又需要对其进行分类和回归,所以就需要使用ROIs Pooling,先将region proposal划分为尽可能等大的几个section(section数目与输出特征图尺寸维度相关),然后对每个section进行max pooling,获得输出大小固定的特征图。
  9. ROIs Pooling操作中两次量化(边框长宽除以步
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值