目录
心得体会
李宏毅老师的讲课幽默风趣,举了宝可梦的例子帮助理解,带入其中来解决实际问题。主要学习了误差与梯度下降,介绍了神经网络训练过程中的误差是如何产生的(bias、var),两种误差产生的原因。也介绍了训练模型时如何提高学习的效率,如何更新鞍点和局部极小值点。最后是梯度下降法本身的局限性。
在这里感谢datawhale开源社区的小伙伴们给予的学习帮助,今后的学习也要一样加油呀
提示:以下是本篇文章正文内容
知识解析
一、过拟合与欠拟合
(1)什么是欠拟合?
欠拟合是指模型不能在训练集上获得足够低的误差。换句换说,就是模型复杂度低,模型在训练集上就表现很差,没法学习到数据背后的规律。
如何解决欠拟合?
欠拟合基本上都会发生在训练刚开始的时候,经过不断训练之后欠拟合应该不怎么考虑了。但是如果真的还是存在的话,可以通过增加网络复杂度或者在模型中增加特征,这些都是很好解决欠拟合的方法。
(2)什么是过拟合?
过拟合是指训练误差和测试误差之间的差距太大。换句换说,就是模型复杂度高于实际问题,模型在训练集上表现很好,但在测试集上却表现很差。模型对训练集"死记硬背"(记住了不适用于测试集的训练集性质或特点),没有理解数据背后的规律,泛化能力差。
为什么会出现过拟合现象?
造成原因主要有以下几种:
1、训练数据集样本单一,样本不足。如果训练样本只有负样本,然后那生成的模型去预测正样本,这肯定预测不准。所以训练样本要尽可能的全面,覆盖所有的数据类型。
2、训练数据中噪声干扰过大。噪声指训练数据中的干扰数据。过多的干扰会导致记录了很多噪声特征,忽略了真实输入和输出之间的关系。
3、模型过于复杂。模型太复杂,已经能够“死记硬背”记下了训练数据的信息,但是遇到没有见过的数据的时候不能够变通,泛化能力太差。我们希望模型对不同的模型都有稳定的输出。模型太复杂是过拟合的重要因素。
如何防止过拟合?
- 获取和使用更多的数据(数据集增强)——解决过拟合的根本性方法
- 采用合适的模型(控制模型的复杂度)
- 降低特征的数量
- L1 / L2 正则化
- Dropout
- Early stopping(提前终止)
二、梯度下降法
(1)基本思想
梯度下降法的基本思想可以类比为一个下山的过程。假设这样一个场景:一个人被困在山上,需要从山上下来(i.e. 找到山的最低点,也就是山谷)。但此时山上的浓雾很大,导致可视度很低。因此,下山的路径就无法确定,他必须利用自己周围的信息去找到下山的路径。这个时候,他就可以利用梯度下降算法来帮助自己下山。具体来说就是,以他当前的所处的位置为基准,寻找这个位置最陡峭的地方,然后朝着山的高度下降的地方走,同理,如果我们的目标是上山,也就是爬到山顶,那么此时应该是朝着最陡峭的方向往上走。然后每走一段距离,都反复采用同一个方法,最后就能成功的抵达山谷。
我们同时可以假设这座山最陡峭的地方是无法通过肉眼立马观察出来的,而是需要一个复杂的工具来测量,同时,这个人此时正好拥有测量出最陡峭方向的能力。所以,此人每走一段距离,都需要一段时间来测量所在位置最陡峭的方向,这是比较耗时的。那么为了在太阳下山之前到达山底,就要尽可能的减少测量方向的次数。这是一个两难的选择,如果测量的频繁,可以保证下山的方向是绝对正确的,但又非常耗时,如果测量的过少,又有偏离轨道的风险。所以需要找到一个合适的测量方向的频率,来确保下山的方向不错误,同时又不至于耗时太多!
首先,我们有一个可微分的函数。这个函数就代表着一座山。我们的目标就是找到这个函数的最小值,也就是山底。根据之前的场景假设,最快的下山的方式就是找到当前位置最陡峭的方向,然后沿着此方向向下走,对应到函数中,就是找到给定点的梯度 ,然后朝着梯度相反的方向,就能让函数值下降的最快!因为梯度的方向就是函数之变化最快的方向(在后面会详细解释)
所以,我们重复利用这个方法,反复求取梯度,最后就能到达局部的最小值,这就类似于我们下山的过程。而求取梯度就确定了最陡峭的方向,也就是场景中测量方向的手段。
问题阐述
为什么用比较简单的模型,方差是比较小
因为简单的模型拟合能力不如复杂模型,所以对一些偏差较大的值不太敏感,受到不同训练集的影响是比较小的。
参考资料:
过拟合与欠拟合:https://zhuanlan.zhihu.com/p/72038532
梯度下降法:https://www.jianshu.com/p/c7e642877b0e
机器学习视频:https://www.bilibili.com/video/BV1Ht411g7Ef