简单解释
中心极限定理(Central Limit Theorem)是指概率论中随机变量序列部分和分布渐近于正态分布的定理。简单而言,对于任意分布,只要随机变量之间相互独立,且具有相同的分布,从这些随机变量中随机抽n个值,然后求均值,并重复足够多的次数后,这些均值服从正态分布!
核心核心要点:(1)任意分布;(2)随机变量之间相互独立,且同分布;(3)均值;(4)重复次数足够多
下图来自 Central limit theorem,wiki
扩展阅读
copy from: 中心极限定理的最最通俗解释
中心极限定理
在适当的条件下,大量相互独立随机变量的均值经适当标准化后依分布收敛于正态分布。每次从这些总体中随机抽取 n 个抽样,一共抽 m 次。 然后把这 m 组抽样分别求出平均值, 这些平均值的分布接近正态分布。
中心极限定理告诉我们,当样本量足够大时,样本均值的分布慢慢变成正态分布,就像下图:
实例:抽取1000组数据
我们在生产的随机数中,一次抽取50个作为一组并计算它的平均值,共抽取1000次,得到1000个平均值,然后通过seaborn的distplot看着1000个数值的分布。
重要性和注意点
当采样的数量接近无穷大时,我们的抽样分布就会近似于正态分布。这个统计学基础理论意味着我们能根据个体样本推断所有样本。结合正态分布的其他知识,我们可以轻松计算出给定平均值的值的概率。在理论上保证了我们可以用只抽样一部分的方法,达到推测研究对象统计参数的目的。
其中要注意的几点:
-
总体本身的分布不要求正态分布
掷一个骰子是平均分布,最后每组的平均值也会组成一个正态分布。 -
样本每组要足够大,但也不需要太大
取样本的时候,一般认为,每组大于等于30个,即可让中心极限定理发挥作用。
作者:statr
链接:https://www.jianshu.com/p/7e0597c0200a
来源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。