【AI知识点】正态分布(高斯分布)和中心极限定理(CLT)

【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】


正态分布(Normal Distribution)中心极限定理(Central Limit Theorem, CLT) 是统计学中非常重要的概念,它们广泛应用于概率论、数据分析、机器学习等领域。以下将详细解释这两个概念及其关系。

1. 正态分布(Normal Distribution)

a. 定义

正态分布,也称为高斯分布,是一种非常常见的连续概率分布,用于描述许多自然现象和测量数据。它的概率密度函数(PDF)呈现典型的钟形曲线,具有对称性。

正态分布的数学表达式为:

f ( x ) = 1 σ 2 π exp ⁡ ( − ( x − μ ) 2 2 σ 2 ) f(x) = \frac{1}{\sigma \sqrt{2 \pi}} \exp \left( -\frac{(x - \mu)^2}{2 \sigma^2} \right) f(x)=σ2π 1exp(2σ2(xμ)2)

其中:

  • x x x 是随机变量。
  • μ \mu μ均值,表示分布的中心位置。
  • σ \sigma σ标准差,表示分布的离散程度或宽度。
  • σ 2 \sigma^2 σ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值