正态分布(Normal Distribution)和中心极限定理(Central Limit Theorem, CLT) 是统计学中非常重要的概念,它们广泛应用于概率论、数据分析、机器学习等领域。以下将详细解释这两个概念及其关系。
1. 正态分布(Normal Distribution)
a. 定义
正态分布,也称为高斯分布,是一种非常常见的连续概率分布,用于描述许多自然现象和测量数据。它的概率密度函数(PDF)呈现典型的钟形曲线,具有对称性。
正态分布的数学表达式为:
f ( x ) = 1 σ 2 π exp ( − ( x − μ ) 2 2 σ 2 ) f(x) = \frac{1}{\sigma \sqrt{2 \pi}} \exp \left( -\frac{(x - \mu)^2}{2 \sigma^2} \right) f(x)=σ2π1exp(−2σ2(x−μ)2)
其中:
- x x x 是随机变量。
- μ \mu μ 是均值,表示分布的中心位置。
- σ \sigma σ 是标准差,表示分布的离散程度或宽度。
- σ 2 \sigma^2 σ