opencv学习笔记代码分析之平滑

代码

#include"opencv2/imgproc.hpp"
#include"opencv2/imgcodecs.hpp"
#include"opencv2/highgui.hpp"
using namespace std;
using namespace cv;
int DELAY_CAPTION = 1500; //延时时间
int DELAY_BLUR = 100;     //延迟时间
int MAX_KERNEL_LENGTH = 31;  
Mat src; Mat dst;
char window_name[]="Smoothing Demo";//定义打开窗口的名字定义
int display_caption(const char*caption); //显示画面
int display_dst( int delay );   //延迟时间函数
int main(void)   //主函数
{
  nameWindow( window_name, WINDOW_AUTOSIZE );     //创建窗口
  src=imread("lena.jpg",IMREAD_COLOR);            //读入图像
  if( display_caption( "Original Image" ) != 0 ) { return 0; }    //绘制原始图像图像窗口
  dst = src.clone();                                               //将src中所有的数据拷贝到dst中
  if( display_dst( DELAY_CAPTION ) != 0 ) { return 0; }
  if( display_caption( "Homogeneous Blur" ) != 0 ) { return 0; }    //均值模糊   代码含义后面解释
  for ( int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2 )
      { blur( src, dst, Size( i, i ), Point(-1,-1) );
        if( display_dst( DELAY_BLUR ) != 0 ) { return 0; } }
  if( display_caption( "Gaussian Blur" ) != 0 ) { return 0; }
  for ( int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2 )
      { GaussianBlur( src, dst, Size( i, i ), 0, 0 );
        if( display_dst( DELAY_BLUR ) != 0 ) { return 0; } }
  if( display_caption( "Median Blur" ) != 0 ) { return 0; }
  for ( int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2 )
      { medianBlur ( src, dst, i );
        if( display_dst( DELAY_BLUR ) != 0 ) { return 0; } }
  if( display_caption( "Bilateral Blur" ) != 0 ) { return 0; }
  for ( int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2 )
      { bilateralFilter ( src, dst, i, i*2, i/2 );
        if( display_dst( DELAY_BLUR ) != 0 ) { return 0; } }
  display_caption( "End: Press a key!" );
  waitKey(0);
  return 0;
}
int display_caption( const char* caption )     //用绘图函数实现介绍界面
{
  dst = Mat::zeros( src.size(), src.type() );//创建一个和src图像同个数的零数组
  putText( dst, caption,
           Point( src.cols/4, src.rows/2),
           FONT_HERSHEY_COMPLEX, 1, Scalar(255, 255, 255) );//图像绘制函数
  imshow( window_name, dst );
  int c = waitKey( DELAY_CAPTION );
  if( c >= 0 ) { return -1; }
  return 0;
}
int display_dst( int delay )//延时函数
{
  imshow( window_name, dst );
  int c = waitKey ( delay );
  if( c >= 0 ) { return -1; }
  return 0;
}

补充分析
让我们检查仅涉及平滑过程的OpenCV函数,因为现在已经知道其余的。
归一化块过滤器
OpenCV提供函数cv :: blur来使用此过滤器进行平滑处理。

  forint i = 1; i <MAX_KERNEL_LENGTH; i = i + 2{ blur(src,dst,Size(i,i),Point(-1-1));
        if(display_dst(DELAY_BLUR)!= 0{ return 0; }}

我们指定4个参数(更多详细信息,请参阅参考):

src:源图像
dst:目标图像
Size(w,h):定义要使用的内核的大小(宽度为w像素和高度h像素)
Point(-1,-1):表示相对于邻域的锚点(被评估的像素)的位置。如果存在负值,则内核的中心被认为是锚点。
高斯滤波器
它由函数cv :: GaussianBlur执行:

 for ( int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2 )
      { GaussianBlur( src, dst, Size( i, i ), 0, 0 );
        if( display_dst( DELAY_BLUR ) != 0 ) { return 0; } }

这里我们使用4个参数:

src:源图像
dst:目标图像
大小(w,h):要使用的内核的大小(要考虑的邻居)。和必须是奇数和正数,否则将使用和参数计算大小。w ^HσXσÿ
σX:的标准偏差。写意味着使用内核大小计算。0σX
σÿ:的标准偏差。写意味着使用内核大小计算。0σÿ
中值滤镜:
这个过滤器由cv :: medianBlur函数提供:

  forint i = 1; i <MAX_KERNEL_LENGTH; i = i + 2{ medianBlur(src,dst,i);
        if(display_dst(DELAY_BLUR)!= 0{ return 0; }}

我们使用三个参数:

src:源图像
DST:目标图像,必须是相同的类型的src
i:内核的大小(只有一个,因为我们使用一个方形窗口)。必须奇怪
双边过滤器
由OpenCV函数cv :: bilateralFilter提供

  forint i = 1; i <MAX_KERNEL_LENGTH; i = i + 2{ bilateralFilter(src,dst,i,i * 2,i / 2;
        if(display_dst(DELAY_BLUR)!= 0{ return 0; }}

我们使用5个参数:

src:源图像
dst:目标图像
d:每个像素邻域的直径。
:颜色空间中的标准偏差。σCo l o r
:坐标空间中的标准偏差(以像素为单位)σ小号p 一个Ç ë
结果
在这里插入图片描述
在这里插入图片描述
基本上都是这种流程。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值