《图论》第三章:平面图

一、课本概念及公式

3.1 平面图及其平面嵌入

平面图的定义

在这里插入图片描述

3.2 平面图欧拉公式

公式

在这里插入图片描述

3.3 极大平面图

面的次数和桥的概念

在这里插入图片描述

平面图的各个面的边数和与边满足的关系

在这里插入图片描述
即: ∑ i = 1 ϕ d ( f i ) = 2 ε \sum_{i=1}^{\phi} d\left(f_{i}\right)=2 \varepsilon i=1ϕd(fi)=2ε

推论3.1

在这里插入图片描述
证明:
在这里插入图片描述
若非连通图时,可以分成多个连通片,有:
在这里插入图片描述

推论3.2

在这里插入图片描述
证明:
由 : { ε ⩽ 3 ν − 6 ∑ v ∈ V ( G ) d ( v ) = 2 ε ∑ v ∈ V ( G ) d ( v ) ⩾ δ ν 由:\left\{\begin{array}{c} \varepsilon \leqslant 3\nu-6 \\ \sum_{v \in V(G)} d(v)=2 \varepsilon \\ \sum_{v \in V(G)} d(v) \geqslant \delta \nu \end{array}\right. ε3ν6vV(G)d(v)=2εvV(G)d(v)δν

得 : δ ν ⩽ 2 ε ⩽ 2 ( 3 ν − 6 ) δ ⩽ 6 − 12 ν 得:\begin{aligned} \delta \nu & \leqslant 2 \varepsilon \leqslant 2(3 \nu-6) \\ \delta & \leqslant 6-\frac{12}{\nu} \end{aligned} δνδ2ε2(3ν6)6ν12

极大平面图定义

在这里插入图片描述

定理3.3,极大平面图的充要条件

在这里插入图片描述
证明:
充分性,即证若存在G的平面嵌入G`的每个面都是三角形,则G是极大平面图:
{ d ( f ) = 3  ①  ∑ f ∈ F ( G ) d ( f ) = 2 ε  ②  ν − ε + ϕ = 2  ③  \left\{\begin{array}{l}d(f)=3 \quad \text { ① } \\ \sum_{f \in F(G)} d(f)=2 \varepsilon \text { ② } \\ \nu-\varepsilon+\phi=2 \text{ ③ } \end{array}\right. d(f)=3 ① fF(G)d(f)=2ε ② νε+ϕ=2 ③ 

联立①②得: 3 ϕ = 2 ε 3 \phi=2 \varepsilon 3ϕ=2ε

代入③消去φ得: ε = 3 ν − 6 \varepsilon=3 \nu-6 ε=3ν6

由推论3.1知 ε ⩽ 3 ν − 6 \varepsilon \leqslant 3 \nu-6 ε3ν6,故边已经达到上界,故G是极大平面图

必要性,即证G是极大平面图,则G的平面嵌入G`的每个面都是三角形:
在这里插入图片描述

推论3.3(极大平面图的充要条件公式表达)和定理3.4

在这里插入图片描述

3.4 平面图的充要条件

证明k3,3不是平面图

反证法:

{ d ( f ) ⩾ 4          ① ∑ d ( f ) = 2 ε       ② \left\{\begin{array}{l}d(f) \geqslant 4 \quad \text{ \ \ \ \ \ \ \ ①} \\ \sum d(f)=2 \varepsilon \text{ \ \ \ \ ②} \end{array}\right. {d(f)4         ①d(f)=2ε      ②

得: 4 ϕ ⩽ 18 , ϕ ⩽ 4 4 \phi \leqslant 18, \phi \leqslant 4 4ϕ18,ϕ4

再结合 ε = 9 , ν = 6 \varepsilon=9, \nu=6 ε=9,ν=6 ν − ε + ϕ = 2 \nu-\varepsilon+\phi=2 νε+ϕ=2 得: 6 − 9 + 4 ⩾ 2 6-9+4 \geqslant 2 69+42

推出矛盾,故k3,3不是平面图。

同胚的概念

在这里插入图片描述

定理3.5,G是平面图的充要条件

在这里插入图片描述
一般使用定理的下面这个形式来证明某个图不是平面图(将其收缩成K5或K3,3)
在这里插入图片描述

G的初等收缩概念

在这里插入图片描述

图的厚度估计式

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值